Concurrent Observations of Meteor Head Echo Populations at Multiple High-Power Radar Facilities
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Meteor Experiment

Simultaneous head echo observations at three high-power radar
facilities were taken before dawn on October 10" & 11t 2019.

Resolute Bay Incoherent Scatter Radar (RISR-N)

Carrier frequency: 442.5 MHz

Pulse waveform: Minimum Sidelobe 51, 1 us baud
Pulse length: 51 ps

Inter-Pulse Period: 1.4 ms

Beam angle: 26° azimuth, 86° elevation

Millstone Hill Observatory (MHO)

Carrier frequency: 440 MHz

Pulse waveform: Barker-7, 6 ps baud
Pulse length: 42 us

Inter-Pulse Period: 2 ms 1
Beam angle: 270° azimuth, 45° elevation | , *

(not zenith-pointing!) e o ?”-l(::e{slo-()f‘ o
Jicamarca Radio Observatory (JRO)

Carrier frequency: 50 MHz

Pulse waveform: Minimum Sidelobe 51, 1 ps baud
Pulse length: 51 ps

Inter-Pulse Period: 1.25 ms

Beam angle: 90° elevation

Determine meteor decelerations more accurately, and estimate said accuracy
« Previous work calculates decelerations but does not quantify accuracyl!
Directly compare head echo populations between facilities without diurnal,
seasonal, or space weather observation biases
» Assess effect of radar instrument parameters and beam direction
Future: Infer lower thermospheric neutral densities via meteor properties
including deceleration, and understand latitudinal coupling

Quantifying Deceleration

Range rate profiles via phase differencing still too noisy for finite-differencing.
Therefore, derivative of range rate exponential fit gives us range deceleration.
Covariance transform used to determine 95% confidence intervals of deceleration:
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Detection rates throughout experiment Detection rates are

consistent with previous
experiments.BIAIB] They
remain relatively constant
throughout duration except at JRO

where clutter sometimes obscures
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40 - ol head echoes.

JRO detection rate highest due to lower carrier
frequency capable of detecting less dense plasma
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MHO detection rate higher than RISR-N due to
smaller angle between beam and ecliptic plane
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We do not measure
decelerations above

60 km/s2, unlike a previous
comparative study where many
100-1000 km/s? head echoes are
observed at the Poker Flat and
Sondrestrom radars.!t We expect
similar observations between
Poker Flat and RISR-N (both
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Altitude, range rate, and range deceleration of head echoes

Cutoff at 55 km/s observed due to high latitude of RISR-N,
where meteors have large beam-transverse velocities
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Considering phase difference between pulses of matched filter head
echo signal yields order-of-magnitude range rate accuracy
improvement over Doppler rate deduced from individual pulses! [2]
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AMISR facilities), so further
investigation is necessary. Could
be a discrepancy in measurement

With beam at 45° elevation angle, there is no
trend to decelerations and some range rates
are below zero (meteor going “up” beam)

removes discontinuities
in Python + Numpy

With beam zenith-pointing, higher decelerations are
observed at lower altitudes — a measure of neutral density!
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Conclusions and Future Work
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PUlse from mateor start Facility latitude and beam pointing direction are significant factors for head echo detectability

Ability of phase-differencing technique to improve range rate/deceleration measurement accuracy for phase-
coded pulses is demonstrated (1 km/s? for range deceleration of strong head echoes)
We do not observe high-deceleration meteors, unlike previous experiments
» Likely a measurement or detectability discrepancy; future work will investigate further
A is the phase difference between pulses of £ ... When beam is zenith-pointing, head echo range decelerations are sensitive to neutral atmosphere
the complex signal at range gate of head echo B SN S U S * Beam-transverse meteor veloglty component remains unknown; future work will estimate it (RISR-N)
Time (sec) or use available interferometric measurements (JRO)
Technique by Li et al.[1 will be modified to estimate neutral density profile at each facility
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*Assumes meteoroid originates from within solar system and
does not encounter third-body perturbations
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