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Results & Population Analysis

Quantifying Deceleration

Phase Differencing Technique

Meteor Experiment

Simultaneous head echo observations at three high-power radar 

facilities were taken before dawn on October 10th & 11th, 2019.

Resolute Bay Incoherent Scatter Radar (RISR-N)

Millstone Hill Observatory (MHO)

Jicamarca Radio Observatory (JRO)
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Conclusions and Future Work

Considering phase difference between pulses of matched filter head 

echo signal yields order-of-magnitude range rate accuracy 

improvement over Doppler rate deduced from individual pulses! [2]
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Range rate profiles via phase differencing still too noisy for finite-differencing.

Therefore, derivative of range rate exponential fit gives us range deceleration.

Covariance transform used to determine 95% confidence intervals of deceleration:

Motivations

Σ is the covariance matrix for parameters 

a, b, and 𝜆 from curve fit

Contact

*Assumes meteoroid originates from within solar system and 

does not encounter third-body perturbations

Detection rates throughout experiment

We do not measure 

decelerations above 

60 km/s2, unlike a previous 

comparative study where many 

100-1000 km/s2 head echoes are 

observed at the Poker Flat and 

Sondrestrom radars.[1] We expect 

similar observations between 

Poker Flat and RISR-N (both 

AMISR facilities), so further 

investigation is necessary. Could 

be a discrepancy in measurement 

method or radar detectability.

Altitude, range rate, and range deceleration of head echoes

• Facility latitude and beam pointing direction are significant factors for head echo detectability

• Ability of phase-differencing technique to improve range rate/deceleration measurement accuracy for phase-

coded pulses is demonstrated (±1 km/s2 for range deceleration of strong head echoes)

• We do not observe high-deceleration meteors, unlike previous experiments

• Likely a measurement or detectability discrepancy; future work will investigate further

• When beam is zenith-pointing, head echo range decelerations are sensitive to neutral atmosphere

• Beam-transverse meteor velocity component remains unknown; future work will estimate it (RISR-N) 

or use available interferometric measurements (JRO)

• Technique by Li et al.[6] will be modified to estimate neutral density profile at each facility

Detection rates are 

consistent with previous 

experiments.[3][4][5] They 

remain relatively constant 

throughout duration except at JRO 

where clutter sometimes obscures 

head echoes.

With beam zenith-pointing, higher decelerations are 

observed at lower altitudes – a measure of neutral density!

Range-aliased spread F & 

equatorial electrojet events 
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MHO detection rate higher than RISR-N due to 

smaller angle between beam and ecliptic plane

JRO detection rate highest due to lower carrier 

frequency capable of detecting less dense plasma

With beam at 45° elevation angle, there is no 

trend to decelerations and some range rates 

are below zero (meteor going “up” beam)
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𝛥𝜙 is the phase difference between pulses of 

the complex signal at range gate of head echo

np.unwrap()

removes discontinuities 

in Python + Numpy

• Determine meteor decelerations more accurately, and estimate said accuracy

• Previous work calculates decelerations but does not quantify accuracy[1]

• Directly compare head echo populations between facilities without diurnal,

seasonal, or space weather observation biases

• Assess effect of radar instrument parameters and beam direction

• Future: Infer lower thermospheric neutral densities via meteor properties

including deceleration, and understand latitudinal coupling
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Cutoff at 55 km/s observed due to high latitude of RISR-N, 

where meteors have large beam-transverse velocities
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