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With the neutral wind data from lonospheric Connection Explorer (ICON) Michelson 125.0 l°'°°°4 Eiﬁz-
Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI), we give a
climatological and morphological study of large wind shears. It shows that the latitudinal,
longitudinal and local time dependence is highly dependent on season as well as altitudes
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and hints global tidal effects. In general, strongest negative shears mostly happen at ~107 0.0001 . . . . .
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Fig.5 Normalized altitudinal occurrences in each latitude bin for maximum negative shears (left panel) and positive Fig.9 Same as Fig.8 but for SW2 components
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ion convergence in the E-region Map to the F-region, * Strongest negative shears. mostly happen at ~107 km from 25N to 40N latitudes ana Local time dependences are strongly dependent on altitudes as well as season (summer
correlated with Sporadic E layers leading to ion drift, 113 km from 105 to 20N latitudes. | situation shown in Figure.8). Occurrences become minor above 115 km, which implies LT
triggering plasma * Strongest positive shears mostly happen at ~110 km from -155 to 40N latitudes. dependence is closely related with upward transporting waves with relatively small vertical
irregularity | | | o | wavelength. At ~101, 105 and 107 km altitudes, the LTs dependence of strong shears are
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are specifically about Local Times, latitudinal, longitudinal as well as seasonal S M Ao have fargest occuirence rate, but dont have farge enough maghitudes an superposition of global tides as well as in-situ wave effects.

dependences of large wind shears potentially be averaged out by the opposite sign of shears thus not obvious in Fig.4a

| which represents average magnitudes.
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