

Comparison and validation of photochemical models for atomic oxygen ion retrieval from ground-based observations of 630.0 nm airglow near Irkutsk Y. Duann^{*1,2}, L. C. Chang^{1,2}, Y. -C. Chiu^{1,2}, C. C. J. H. Salinas^{1,2}, A. V. Dmitriev^{1,2}, K. G. Ratovsky³,

NCU SPACE SCIENCES

I. V. Medvedeva³, R. Vasilyev³, A. V. Mikhalev³, J. Y. Liu^{1,2}, C. H. Lin⁴, T. -W. Fang^{5,6,7} ¹ Graduate Institute of Space Science, National Central University, Taoyuan, Taiwan ² Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan. ³ Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia ⁴ Department of Earth Science, National Cheng Kung University, Tainan, Taiwan ⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, U.S.A ⁶ Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, CO, USA ⁷ Satellite Research Centre, Nanyang Technological University, Singapore * Email: cntwtpe@gmail.com

Introduction

(Hosokawa *et al.*, 2019)

 $[O^+]=n_e$

 $[O_2]$

300 km

 $O(^{1}D)$

 $\rightarrow O(^{3}P_{1}) + hv(636.4 nm)$

VIDEOSKAN-285

Results

.96

630.0 nm

Atomic oxygen ions (O^+) have been identified as the main plasma component in the *F*-region of the ionosphere, and the density of $O^+([O^+])$ can be considered almost equivalent to the electron density (Ne) in the F_2 layer (Aladjev et al., 2001).

Datasets

- 1. The Geophysical Observatory of the Russian Academy of Sciences Siberian Branch, Institute of Solar-Terrestrial Physics (ISTP-SB-RAS) Ground-based 630.0 nm Airglow Observations
- 2. Irkutsk Station IR352 DPS-4 Digisonde
- 3. FORMOSAT-3/COSMIC Observations
- 4. National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
- 5. The International Reference Ionosphere Model (IRI-2012)
- 6. US Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar (NRLMSISE-00)

Empirical Atmospheric Model

The absolute difference of the DPS-4 Ne & the inversion models derived $[O^{\dagger}] w/$

Test 1 Result [O⁺]

There were only 63 clear nights with data in 2016, and 6 of them are new moon clear nights. In this study, we utilized data from all 360 days when observations were possible.

Methodology

residual between the TIE-GCM [O⁺] and the sensitivity testing results of the inversion Model 3 [O⁺] by switching the **TIE-GCM** components

Test 4 Result [O⁺]

The Inversion model 3 performs results which is the closest to the observations than the others. The peak VER height has a significant impact to the seasonal pattern of the retrieved [O+]. The sensitivity test manifests that the [O+] generated from the inversion models are sensitive to the variations of the [O2] and Ne especially.

The retrieved [O+] with observed 630.0 nm intensity and EM provided variables is capable of revealing a result similar to both F3/C and DPS-4 observations, and the secondary peak can be manifested more clearly by applying with the airglow model 3 derived peak VER height than in the observations.