
1. Maximum Entropy 
Considering a vector of errors  associated with the random 
nature of the visibility data, we can write , and 
thus maximize the entropy of the brightness samples [1]


 subject to  ,


where  is the total image brightness,  is the variance of the 
visibility samples and  is a constraint to the error norm.


2. Tikhonov Regularization + non-negative constraint 
A standard formulation of the Tikhonov regularization is


 ,


where  is the regularization parameter. We can reformulate 
this problem imposing a constraint to the error norm and forc-

ing the solutions to be non negative, i.e.,

 subject to  and  .


In this formulation  is a constraint equivalent to  in the ME 
approach, thus, similar solutions should be expected.


3. Compressed Sensing + non-negative constraint 
Considering the transformation , such that  is a ba-
sis in which  is sparse, we can formulate the compressed 
sensing problem [3] as a basis pursuit denoising problem [4]. 
Thus, if in addition we impose a non-negative constraint to the 
brightness solution, we have the following problem


 subject to  and  .


This problem can be solved as a convex optimization problem. 
We are considering that  is a Daub-16 basis transformation 
matrix.
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The radar imaging technique has been applied at the Jicamar-
ca Radio Observatory to study how ionospheric structures 
evolve as function of space and time for many years. The 
problem consists on estimating the inverse Fourier transform 
of spatial cross correlation measurements collected with a 
non-uniform distribution of antenna receivers. As a result we 
obtain the brightness function of the ionospheric structures 
that are of our interest. Among the different algorithms ap-
plied, Maximum Entropy has been widely used in the commu-
nity showing a good performance. This technique naturally 
provides non-negative solutions of the brightness function 
which is desirable. In this work, we have explored some alter-
native algorithms to solve the radar imaging inverse problem 
imposing a non-negative constraint to the solution. Specifical-
ly, two alternative algorithms were implemented, one based on 
Tikhonov regularization, and the other applying compressed 
sensing using Daubechies basis functions. Imposing the non-
negative constraint to both algorithms, we have obtained so-
lutions very similar to the ones obtained with maximum en-
tropy. A statistical comparison between these different ap-
proaches based on simulated data is presented to analyze 
their performance under different conditions.

Marco Milla 1, Diego Yupanqui 2, and Karim Kuyeng 3

1 Sección Electricidad y Electrónica, Pontificia Universidad Católica del Perú


2 Facultad de Ciencias, Universidad de Ingeniería

3 Radio Observatorio de Jicamarca, Instituto Geofísico del Perú

A radar transmits radiowave pulses that illuminate the struc-
tures in the ionosphere. The backscattered signals are detect-
ed by a set of antennas distributed on the ground. The corre-
lation between the voltages  and  collected by a pair of an-
tennas is called the visibility function and it is given by [1,2]


 ,


where  is the radar wavenumber, and  is the distance vec-
tor between the antennas  and . This function is also the 
Fourier transform of the effective brightness  of the 
structures we want to image. Above,  is the solid angle, and 
 is a unit vector in the direction of the returned signals (usual-

ly expressed in terms of direction cosines). If we consider that 
 is narrow in one direction (for instance in the case of 

the brightness of Equatorial plasma irregularities), we can re-
formulate the previous equation as a 1D problem,


 ,


where the visibility  and the brightness  are a Fourier 
transform pair. This expression can be discretized and written 
in matrix form as follows,


 ,

where  is a vector of the  cross-correlation samples mea-
sured by the radar,  is a vector of  elements that correspond 
to the brightness function we want to recover, and  is a 

 matrix that results from approximating the integral 
above as a summation. This system of equations is typically 
underdetermined ( ), thus regularization techniques 
have to be applied in order to find a solution. In addition, we 
are imposing non-negative constraints to the standard regu-
larization approaches to obtain appropriate  reconstructions.
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Figure 2: Comparison of the correlation and MSE of reconstructed images with re-
spect to the truth brightness as function of SNR. Four different techniques were con-
sidered (Capon, Tikhonov, Maximum Entropy, and Compressed Sensing). The top 
panels correspond to  while the bottom panels correspond to .Ninc = 10 Ninc = 100

Considering the Jicamarca antenna configu-
ration described in [3], we have applied four 
methods (Capon, Tikhonov, Maximum en-
tropy, and Compressed sensing) to recon-
struct images from simulated visibility mea-
surements. For this purpose, we have con-
sidered a Gaussian-shaped reference bright-
ness function with an angular width of 0.015 
rad. We have explored different values of 
SNR and incoherent integrations.

Figure 1: Reference and sample (non-negative) 
reconstructed images used in the comparison. 
The reference has a Gaussian shape with an an-
gular width of 0.015 rad (~0.85 deg).

Inverse problem algorithms with non-negative constraints 
were applied to the radar imaging problem. In general, the re-
constructed images using the different methods have similar 
shapes. In the correlation analysis, we can verify that, at low 
SNR, the compressed sensing reconstructed images are more 
similar to the reference image. When SNR is high, all the dif-
ferent methods have similar performance. In the MSE analysis, 
we can also verify that compressed sensing reconstructed im-
ages are the ones that have less error, however, Maximum en-
tropy and Tikhonov regularization have similar behavior. Fur-
ther studies will be conducted for 2D brightness functions.


