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ABSTRACT ORBITAL DECAY CONCLUSION

Regular orbit propagation methods are used to determine satellite The satellite storm-time orbital decay(SOD) is given by the expression [Chen et al(2012)]:
co-ordinates. In particular, the Simplified General Perturbation g q

method (SGP4) is used with NORAD two element sets (TLEs). & ¢, L /oM @) p (_a> _
However, SGP4 uses a constant drag term (B*) term which does not dt m dt b
consider the variation in atmospheric drag. As a result, SGP4 incurs
significant error in estimating orbit ephemerides for long term
propagation, In this work, we have provided atmospheric drag Cp = drag co-efficient, A = effective s/c cross section, m = s/c mass, G = gravitational constant, M = mass of
analysis of CNOFS and GRACE during Sep 2011 and Aug 2005 earth, (a) = daily averaged semi-major axis, p = neutral density, p;, = quiet-time density.

geomagnetic storms respectively. A gas-surface interaction model

called Diffused Reflection with incomplete accommodation (DRIA), Orbital Decay is obtained by integrating decay rate over time:

has been used on a simplistic configuration of the satellites to i p i p

calculate normalized drag co-efficient. Using drag analysis results, — = (b E\/GM(a)f pdt (Aa), = I(E)b = —CDE\/GM(a)fpbdt
we have calculated estimated storm-time orbital decay (SOD) of the

satellites during selected storm periods. The results show increased > Neutral density for normal and quiet-time condition is calculated using Jacchia-
decay rate during peak phase of the storms and subsequently, a Bowman(2008) empirical atmospheric model.

gii]ie:;1:jrcl)aritaalxicsiecdaeycacyon;rp:;edret;ulqa:'jieStGItDizTeﬁr (;AI‘D acgzwgirissﬂngzitz » Orbital decay (Aa) in both cases are almost equal to background decay before

) the shock arrives, however the difference between the two starts increasin .  maior axi : .

significant difference as storm progresses and eventually matches during the main phase of the storm S 6500 Lot com Maloraxs] | | | | | > The updated GITM uses Auroral Spectrum and High-Latitude
' 2002 2004 2006 2008 2010 2012 2014 2016 2018 Electric field variabilitY (ASHLEY), an empirical model [(Zhu et

during recovery phase.
: P » Semi major axis decay from SGP4 shows a linear decay with shifts at TLE al., 2022)] that introduces the effect of soft electron
DRAG ANALYSIS epochs, which agrees well with orbital decay before storm but incurs Figure: Semi-major axis of CNOFS (top) and GRACE (bottom) shows the X
significant difference as the storm progresses. decay of a satellite orbit with time

» Results for both satellites show an increased orbital decay rate
during storm. This is mainly caused by increased neutral density
as well as increased drag co-efficient, which contributes to a
larger atmospheric drag force during storm-time.
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Where, % = orbital decay rate, (%)b = background decay rate.
» Semi-major axis decay from SGP4 shows a linear decay, thus not

representing the effect of temporal variation in atmospheric
| ® CNOFSsemimajoraxis| | | | | | drag. This suggests the requirement of an updated orbit
2008 2009 2010 2011 2012 2013 2014 2015 2016 propagation method, which updates the drag term (B* term in
tle), to incorporate the effect of changing drag force in orbit

ephemerides.
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6800 1 » Our aim is to modify SGP4 to have an updated B* term for

every orbit. The neutral density, temperature and wind velocity
data will be obtained from an updated version of Global
6600 1 | | | | | | | | lonosphere Thermosphere Model (GITM).
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precipitation and electric field variation at high latitudes. The
improvement in neutral density estimation is expected to
provide more accurate orbit propagation as well as having a
better data-model comparison.

> Drag co-efficients(Cp) are calculated using a gas-surface interaction
model called DRIA (Diffused reflection and incomplete
accommodation). It considers random thermal motion of incident RESULTS
particles and assumes a diffused reflection with a Maxwell-
Boltzmann distribution for velocity of the reflected particles REFERENCES
[Pilinski (2013)].
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Figure (1a) IMF B, and SYM-H index for June 20-25, 2015, Vertical dashed lines shows Figure (2a) IMF B, and SYM-H index for August 23-28, 2005, Vertical dashed lines shows CELESTRAK D]agram. for diffused . reflection is taken from
shock impact of CME. First two shocks creates minor storms, 3@ one at June 22 18:30 shock impact of CME at August 24 06:30 UT, (1b) Neutral mass density data for GRACE, Pilinski(2013). Co-ordinates for satellites are taken from SSCWEB
UT is the most important impact. (1b) Neutral mass density data for CNOFS, (1c) (1cI storm-tlme orbital decay rate and (1d) orbital decay con7pared with SGP4 semi NASA. Special thanks goes to my group members Aaron and Sal for
storm-time orbital decay rate and (1d) orbital decay compared with SGP4 semi major major axis decay. TLE epochs are denoted by purple dashed lines. Black dashed line hei luable i

axis decay. TLE epochs are denoted by purple dashed lines. Black dashed line represents sudden storm commencement. their valuable 1nputs.

represents sudden storm commencement.
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