
Input Sensitivity
In this work it is fundamental to understand how the model makes predictions based 
on different feature values. Figure 8 shows the ranked feature contributions along 
with their SHAP values. These contributions can be interpreted as the effect that each 
feature has on the predictions made by the model. We used 300 data points taken 
from the dataset to make these estimates.

Figure 8. Ranked input features and their corresponding SHAP values.

Results
These results correspond to the evaluation and comparison of our model and 
FIRST on the testing dataset. It is important to point out that, in this work, FIRST 
is evaluated with occurrences obtained from the characterization presented 
earlier as opposed to the evaluation in the original paper [1], which apparently 
used occurrences from manually labeled ionograms. There were a total of 45 
days for which FIRST could not make a prediction.

Figure 5. Evaluation of FIRST.

Figure 9. Evaluation of FIRST (top) and our model. (bottom)

Figure 10. Confusion matrices for FIRST (left) and our model (right).

Conclusions
The onset altitude climatology is consistent with previous studies. The day of 
the year hugely contributes to the occurrence predictions. Moreover, they can 
be greatly improved by adding the virtual height and solar flux index as input 
features. Our preliminary results suggest that the predictive power of our 
model is superior to FIRST but further analysis is required to validate this claim.
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Introduction
Highly non-linear processes take place in the Ionosphere. Equatorial spread F (ESF) is 
one of these phenomena, and it is characterized by plasma depletions. Fortunately, 
neural networks can learn from high dimensional, non-linear data. 
In this work, we propose a day to day prediction model. We compared the proposed 
model’s predictions to FIRST (Forecasting Ionospheric Real-time Scintillation Tool) [1, 9].

Measurements 
ESF occurrences were characterized from JULIA (Jicamarca Unattended Long-term 
Investigations of the Ionosphere and Atmosphere) radar measurements. Jicamarca’s 
digisonde’s measurements, along with other parameters and ESF occurrences, were 
merged resulting in a dataset that spanned the years 2002 - 2020.

Data processing
We use a binning-binarization algorithm to characterize ESF  [10]. Since we were only 
concerned with occurrences along the time axis, we collapsed the heights as shown in 
figure 1. We processed the SNR (signal to noise ratio) data in order to produce a ground 
truth dataset (of ESF occurrences) necessary for the supervised learning algorithm. The 
characterization procedure relies on thresholds so we compared different values in 
figure 2.

Figure 1. Characterization of ESF occurrence for January 2nd, 2000.

Figure 2. ESF occurrences per month (bottom) and differences obtained by varying the thresholds (top).

Climatology
We extend climatology plots [3] for ESF’s onset altitude with our dataset (years 
2002-2020), with the difference that we use median and interquartile ranges as statistics.

Figure 3. Median onset altitude versus mean solar flux for the dates from January 2002 to August 
2020.

As depicted in figure 3, on June Solstice the altitudes corresponding to the lowest 
solar flux index values are lower than on the other seasons. As expected [1, 3, 9], 
onset altitudes increase with solar flux in all seasons. This might be due to the 
inverse dependence of the growth rate (γ) on F10.7 and its direct dependence on 
height, both through the ion-neutral collision frequency (νin) [6]. In the next 
section, we explore other possible input features.

Neural Network Inputs
Rationale
h’F (1930 LT): “The height of the nighttime F layer is the single most important 
parameter controlling the generation of spread F” [4]. We use the measurements 
at 1930 LT for two reasons: The onset time of ESF is usually around 1920-1945 LT 
for equinox and December solstice [3] and because we compare our model with 
FIRST which also makes predictions at the same LT.
h’F (prev. 30 min): A previous h’F value up to 30 mins before 1930 LT.
∆h’F/∆t: The rate of change of h’F might have an effect on ESF.
F10.7, F10.7 (90 days): Solar flux and its average. This should provide some 
information about the solar cycle as well as the current conditions.
ap, ap (24 h): Geomagnetic activity and its average. Depending on the local time, 
season, and solar cycle, it has an effect on the occurrence of irregularities [5].
Day of the year: Figure 3 depicted the part of the seasonality of ESF.

Feature exploration
We compared the accuracy (ratio of correct predictions to total number of 
predictions) obtained for the validation dataset with different subsets of 
geophysical parameters when passed as inputs to the neural network shown in 
figure 4.

Table 2. Accuracy comparison for different feature sets. For the colormap reference, see Figure 9.

Figure 4. Neural network used during feature exploration.

Input pre-processing
All variables except the day of the year, are scaled between 0 and 1, using 
Scikit-learn’s preprocessing.MinMaxScaler. A time series of some features 
before pre-processing is shown in figure 5. The day of the year (D) is a periodic 
variable and it was processed as such [2] .

DNS = sin(2πD/365), DNC = cos(2πD/365), D: Day of year (1-365)

Figure 5. Time series of some geophysical parameters and their derived quantities.

Neural Network
Hyper-parameter optimization
Optimization was conducted using Optuna’s TPE implementation. The algorithm’s goal 
was to maximize the average accuracy across a number of folds. These folds were 
chosen using the sliding window heuristic with training and validation windows of size 2 
and 1 years respectively. The hyper-parameters optimized were the learning rate, the 
number of layers, the number of units for each layer, the probability of dropout for each 
layer, and the activation function. The optimization history and a sub-configuration of 
each hyper-parameter configuration tried are shown in figure 6.

Figure 6. Hyper-parameter sub-configurations (left) and optimization history (right).

Architecture
It is a Multilayer Perceptron with SELUs as activation functions. It outputs a real 
number, which is then passed to a sigmoid function (a function which maps a real 
number to a number between 0 and 1). Finally, this value is interpreted as a 
probability for Spread F occurrence.

Figure 7. Neural network architecture.

In figure 7, fc d2 is a fully-connected layer which, when applied to a vector of a 
given dimension, d1, outputs a vector of dimension d2. SELU, is an activation 
function and it adds non-linearity to the network. Dropout p, is a layer that, with 
probability p, drops (sets to zero) a given element of its input. This helps the 
previous layer to evenly distribute the weights of its neurons. We trained the 
network for 30 epochs with nn.BCEWithLogitsLoss [7] and batch size 16.
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