Volcano-generated lonospheric Disturbances: Comparison of GITM-R Simulations with GNSS Observation
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Volcano Model and Propagation

It has been known for some time that explosive events can generate acoustic-gravity waves (AGWs)
that then propagate by virtue of the background density profile to thermospheric heights and
influence the ionosphere in a way detectable by dual frequency Global Navigation Satellite Systems
(GNSS) through the measurement of Total electron content (TEC).
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