

2019 Southern Hemispheric SSW triggered Q6DW-Tide-GW interactions observed by meteor radars at 30° S

Zishun Qiao (HAO, Embry-Riddle), Alan Z. Liu (Embry-Riddle), N. M. Pedatella (HAO), Gunter Stober (U Bern, Switzerland), Iain Reid (U Adelaide, Australia), Javier Fuentes (GEMINI, Chile), Chris Adami (ATRAD, Australia)

Introduction & Motivation

- 2019 SH Sudden Stratospheric Warming (SSW) is a rare SH **SSW** (NH SSWs occur ~6 times per decade);
- Quasi-6-Day Wave (Q6DW) are greater than the average in Sep., globally observed in the MLT region and ionosphere;
- Motivation: Does this strong Q6DW activity impact on tides and Gravity Waves (GW) propagation?

Data & Methodology

Instruments

Table 1. Specs of two meteor radars used in this work.

	Radar Specs	Site, lat, long, Height	Status du
	Freq: 35.15MHz High power (48kW) & high	ALO, 30° S, 71°W, 2520m	From 0
CONDOR		SCO, 31° S, 70°W, 1140m	From 0'
	detection rate (30,000/day/site)	LCO, 29° S, 71°W, 2339m	From 02
Buckland	Freq: 55Mhz Power: 18kW	Main, 35°S, 139°E, 302m	ST mod
Park MR		Remote, 35°S, 138°E, 2m	10 days o

Methodology

	Input: Meteor radar observ high temporal & spatial res	vatio solu	ons with Ition
	bipolar distribution coefficient D_{α}		Line-of-sigh velocity
T []	Temperature gradient model Hocking et al. 1999] $T_{radar} = S \cdot log_{10} \left[e \left(2 \frac{dT}{dz} + \frac{mg}{k} \right) \right]$ $\frac{dT}{dz} \simeq -1.2, \frac{mg}{k} \simeq 33.2$ Note that S is the slope of D_{α} at peak height. Q6DW Temp	DVA n re Stob $= \Sigma$ et P $2^{2}, v^{2}$	R: GW dyn gional scal er et al., 202 $((v'_{rad})^2 - (v'_{rad})^2 - (v'_{ra$
	Time averaged Eliassen-Palm flux $\mathbf{F} = \hat{\mathbf{j}}F_y + \hat{\mathbf{k}}F_z$		SD-WAC simulat
	$\begin{split} F_{y} &= -\overline{u_{0}'v_{0}'} = -\frac{1}{2} \Re \{ \tilde{u}_{Q6DW} \tilde{v}_{Q6DW}^{*} \} \\ F_{z} &= \frac{gf}{N^{2}} \frac{\overline{\theta_{0}'v_{0}'}}{\theta_{S}} = \frac{gf}{N^{2}} \frac{\Re \{ \tilde{\theta}_{Q6DW} \tilde{v}_{Q6DW}^{*} \}}{2\theta_{S}} \end{split}$		Iomentum f Heat flux
	E-P flux indicates the energy propa Divergence of E-P flux suggests the	gati e en	on of PWs ergy source

Email: <u>giaoz1@my.erau.edu</u>