Origin and Development of Medium-Scale Traveling Ionospheric Disturbances

E. S. Miller and E. R. Talaat

Geospace and Earth Science Group Johns Hopkins University Applied Physics Laboratory

26 June 2012

Science Question and Approach

Oddly enough...

What is the origin of medium-scale traveling ionospheric disturbances (MSTIDs)?

Approach...

Investigate *E-F* coupling, gravity waves through airglow imaging and middle-latitude SuperDARN HF radar measurements.

Introduction

- MSTID—Medium-Scale Traveling Ionospheric Disturbances
- $\lambda \sim 100$'s km, $v_p \sim 100$ m/s (in westward-equatorward direction, about 45 degrees from magnetic meridian)
- A night-time phenomenon, have been shown to appear in conjugate hemispheres.
- Observed at middle-, tropical-, and low-latitudes in airglow, HF Doppler, ISR, etc.
- Often contain FAI → coherent-scatter HF/VHF observations.
- Origin remains an open scientific question:
 - Originally attributed to atmospheric gravity waves (e.g., Hines, and others).
 - Now, plasma instability (Perkins, E-F coupled) is gaining acceptance (e.g., Behnke, Tsunoda, Cosgrove, Yokoyama).

Gravity Waves: Skip Focusing

Gravity Waves: Skip Focusing

Wallops Island SuperDARN beam #7 10500 kHz O-mode

FAI Bands

- Refraction matters with SuperDARN, especially in the F-region.
- \bullet Employ a raytracing code to identify loci of perpendicularity to ${\bf B} \to {\sf ranges}$ from which FAI is expected.

FAI Bands

Airglow (630-nm) Signature

Combined Airglow and Radar

Combined Airglow and Radar

21 July (202) 2009 - Wallops Island 10500 kHz and Millstone Hill 630 nm

Combined Airglow and Radar

21 July (202) 2009 - Wallops Island 10500 kHz and Millstone Hill 630 nm

Discussion

- Coupling does exist between *E* and *F*-region structure.
- Look to initial motivating interest in MSTIDs—their appearance near/at the geomagnetic equator during deep solar minimum (E. Miller, et al, 2009, Makela, et al, 2010).
- Kelley, 2011, revisited C. Miller, 1997 (no relation):
 MSTIDs are gravity waves that experience minimum
 Joule damping from their interaction with the ionosphere.
- These suggest that Perkins instability is less likely.
 - Perkins instability invalid at equator, Perkins simulations sensitive to initial conditions.
 - Gravity wave explanation requires gravity waves that propagate (nearly) horizontally for > 500 km (movie).

TFGWM Modal Dissipation at 300 km

Auroral source; "ducted" mode experiences less ($10^{1.5}$ vs $10^{2.5}$ in $\Delta T/T$) damping than upper/lower modes; 20-min period.

Local Joule Damping Study

- Does decrease in Joule damping explain propagation of MSTIDs to the equator at solar minimum?
- Devise a crude model of $\mathbf{J} \times \mathbf{B}$
 - Local conductivity tensor computed from IRI 2007, NRLMSISE-00.
 - Dynamo from wind perturbation of 100 m/s rotated 45° from B (preferred direction).
 - Background wind from HWM07.
 - Consider along magnetic meridian of CTIO (0.4°) over $\pm 60^{\circ}$ invariant latitude over entire year.
 - Around midnight local time.

Local Joule Damping Study

- There is still a modest amount of Joule damping at solar minimum.
- MSTIDs have an anecdotal proclivity for appearing on days (of year) 15–35 at CTIO.
- Background wind field seems to have an effect, but have not yet rigorously modeled.

Summary

- **Concept:** Although AGWs in the thermosphere *interact* with the ionospheric plasma, a special class of structure is *enhanced* by plasma-neutral coupling.
 - Given the data, this explanation is compelling, but also difficult to prove.
 - See my MSTID-"plasma blob" connection talk on Friday.
- MSTIDs are an important manifestation of coupling between
 - ionosphere and thermosphere (and possibly below)
 - high, middle, and low latitudes
- Role of E_s layers still not fully-quantified: demand a non-local Joule damping model?
- Does "ducted" gravity wave mode predicted by the Mayr model actually exist? There are many more modern works to consider.