CEDAR Lidar Beyond Phase III; Accomplishments, Requirements and Goals

A self-assessment by the CEDAR lidar community for the Division of Atmospheric Sciences of the National Science Foundation

MARCH 2004
EXECUTIVE SUMMARY

The Coupling Energetics and Dynamics of Atmospheric Regions (CEDAR) program, an element of the U.S. Global Change Program, contributes to our understanding of the whole atmosphere and its response to both natural and anthropogenic processes. The CEDAR program has seen dramatic progress in understanding the physics and chemistry of the middle atmosphere and how this region is coupled with both the lower and the upper atmosphere. Arguably, the CEDAR lidar program has been the keystone for many of the advancements made in CEDAR-related science goals related to middle-atmosphere research, and is a program whose measurement domain and capabilities are directly applicable to climate change concerns. This report highlights the scientific achievements and technical advancements made by the CEDAR lidar community, and provides recommendations and priorities for future initiatives that will lead to new scientific advances in CEDAR science.

The CEDAR lidar program has contributed at various levels to all four science areas of the CEDAR Phase III initiative. Lidar studies have addressed the outstanding scientific questions identified by the CEDAR community. The CEDAR lidar community has published over 200 peer-reviewed papers since 1985. The lidar community has demonstrated expertise in developing new technologies, exploiting unique telescope facilities, and deploying lidar systems at a wide variety of field locations.

Current lidar programs will continue to contribute to CEDAR science, improve system performance and capabilities, and ensure high-quality, high-fidelity measurements. However, to guarantee fundamental advances, the report recommends that the following actions be given the highest priority by the CEDAR community:

1. Ready access to (or development of) large-aperture telescope facilities
2. The development and deployment of robust mobile lidar systems capable of wind and temperature measurements in the middle atmosphere
3. The development and deployment of Doppler Rayleigh wind-temperature systems to meet the need for measurements of the atmospheric circulation below the mesopause region
4. Support for technical innovation at the level of a center of excellence for lidar research
5. The improvement of existing systems by measures such as enabling daytime capabilities and extending Rayleigh systems with Raman channels
6. The extension of lidar measurements into the thermosphere by exploring new species to serve as lidar targets for upper atmospheric research
7. The development of novel lidar technologies to explore alternative methods for studying the middle atmosphere.

The implementation of these recommendations would allow the CEDAR lidar community to obtain

1. wind and temperature measurements over complete diurnal cycles, which are required for the understanding of tidal, planetary, and gravity wave fluxes as well as wave-wave and wave-mean flow interactions in the middle atmosphere,
2. the very high resolution measurements that are required to understand instabilities and other small-scale processes in the middle atmosphere,
3. the consistent long-term measurements that are required to study long-term trends in the middle atmosphere,
4. new measurements in the thermosphere (E and F regions), where they would provide basic measurements of thermospheric composition and circulation,
5. the species-specific measurements of both neutral and ionized species that are required for study ion-neutral coupling and MLT electrodynamics,
6. the high-resolution measurements of nanometer-size particles required for studies of cloud formation in dusty plasma environments.

These measurements are required to advance our understanding of the middle atmosphere.

This report recommends that the CEDAR lidar community engage in a formal and technical community dialog that addresses the community priorities identified above: specifically, that the CEDAR community support the following activities at the annual CEDAR meeting in 2004:

1. a dedicated session with panel discussions identifying and prioritizing scientific questions concerning the middle atmosphere that can be addressed by lidar, and
2. a dedicated session with panel discussions presenting technical approaches to developing the next-generation lidar systems that will be employed by the community.

In addition to meeting the specific needs of the CEDAR lidar, the goal of these sessions will also be to promote two other critical processes:

1. discussions between lidar and non-lidar researchers that will increase synergism in the observational programs of the CEDAR community
2. engagement of students who are already working or considering work in middle-atmosphere lidar.
Finally this report recommends that the NSF Upper Atmosphere Research Section and the CEDAR lidar community work together to accomplish the following:

1. Develop a strategy to ensure continued access to a Class-I large-aperture telescope facility for lidar research (Community Priorities 1 and 4).
2. Create a specific major proposal opportunity in support of next-generation lidar systems (Community Priorities 2, 3, and 4).
3. Support, as appropriate, extensions and improvements to current lidar systems (Community Priority 5).
4. Support as appropriate investigations of new technologies and species for middle-atmosphere lidar studies (Community Priorities 6 and 7).
5. Establish a committee, consisting of both lidar experimentalists and middle/upper atmospheric researchers, to develop an integrated research strategy for the CEDAR lidar community (Community Priorities 1–7).

PREFACE

This report was requested by Dr. Robert M. Robinson, Program Manager in the Division of Atmospheric Sciences of the National Science Foundation (NSF) for the Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program, during the annual CEDAR meeting in June 2003. The purpose of this report is to provide a self-assessment from the CEDAR lidar community to the NSF that could be used to assess the current status and future directions of lidar research in the CEDAR program.

The report is based on a community discussion between the members of the CEDAR lidar community. The participants in this discussion were:

Arecibo Observatory: Craig Tepley, Jonathan Friedman, Shikha Raizada

Clemson University: John Meriwether, Andrew Gerrard

Colorado State University: Chiao-Yao She, David Krueger

Northwest Research Associates: Bifford Williams

Pennsylvania State University: Timothy Kane

SRI International: Jeffrey Thayer, Weilin Pan

University of Alaska: Richard Collins

University of Illinois: Chester Gardner, Gary Swenson, Xinzhao Chu, Alan Liu

Utah State University: Vincent Wickwar, David Rees.

In preparing this report, several members of the CEDAR lidar community contributed documents that reviewed scientific accomplishments, technological opportunities and challenges, and identified future scientific goals and opportunities. These contributions formed the foundation for the report and appear as a companion volume to the report in Appendix II. The contributions present the researchers of the CEDAR lidar community in their own words. These contributions were revised by their authors based on feedback from the community discussion group.

The initial draft of this report was prepared in September and October 2003. Over that two-month period, three drafts of the report were prepared and circulated to thelidar community. Maura Hagan (National Center for Atmospheric Research) and John Plane (University of East Anglia) provided informal reviews of the second draft of the report as researchers who collaborate with the CEDAR lidar community but are not members of the lidar community. The report was then presented to the CEDAR Science Steering Committee (CSSC) at their annual meeting at NSF headquarters in November 2003 and has been circulated in the community. The comments of the CSSC were circulated to the lidar discussion group and follow-up discussions were held at the Fall Meeting of the American Geophysical Union in December. The final draft of the report was prepared in February and March 2004. Christine Stensig, technical editor at SRI, edited the final copy of the report.

This final copy of the report is a revised and augmented version of the CSSC draft report.

Richard L. Collins
Geophysical Institute,
University of Alaska Fairbanks

March 2004

Cover: Photos of lidar sites at (top left to right) Utah State University, Arecibo Observatory, Maui Space Surveillance Site, (bottom left to right) Poker Flat Research Range, Colorado State University, and Sondrestrom Upper Atmosphere Research Facility.
TABLE OF CONTENTS

Volume I

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>1 The CEDAR Program</td>
<td></td>
</tr>
<tr>
<td>1.1 Coupling with Lower Altitudes</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Solar-Terrestrial Interactions</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Polar Aeronomy</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Long-Term Variations</td>
<td>2</td>
</tr>
<tr>
<td>2 CEDAR Lidar in Phase III</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Lidar Science Studies</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Current CEDAR Lidar Systems</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Lidar Operation and Maintenance</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Multi-Instrument Studies</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Student Participation</td>
<td>7</td>
</tr>
<tr>
<td>3 CEDAR Lidar Beyond Phase III</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Technical Challenges</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Site Strategies</td>
<td>9</td>
</tr>
<tr>
<td>3.3 New CEDAR Lidar Systems</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Mobile Middle-Atmosphere Lidar Systems</td>
<td>11</td>
</tr>
<tr>
<td>3.5 Centers of Lidar Excellence</td>
<td>12</td>
</tr>
<tr>
<td>3.6 Data Distribution and Archiving</td>
<td>12</td>
</tr>
<tr>
<td>4 Recommendations</td>
<td>13</td>
</tr>
<tr>
<td>4.1 CEDAR Lidar Community Priorities</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Recommendations to CEDAR Lidar Community</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Recommendations to the NSF Upper Atmosphere Research Section</td>
<td>15</td>
</tr>
</tbody>
</table>

Appendix I: CEDAR Lidar Bibliography

Volume II

Appendix II: Community Contributions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of Lidar Science</td>
<td>2</td>
</tr>
<tr>
<td>Review of the Rayleigh Lidar Technique—Present and Future</td>
<td>39</td>
</tr>
<tr>
<td>Large Aperture Lidar and Upper Atmospheric Studies</td>
<td>58</td>
</tr>
<tr>
<td>Review of NA W/T Lidar</td>
<td>63</td>
</tr>
<tr>
<td>Review of Fe Boltzmann Temperature Lidar</td>
<td>67</td>
</tr>
<tr>
<td>Future CEDAR Lidar-Science Challenges</td>
<td>75</td>
</tr>
<tr>
<td>ALOHA-90 and ALOHA/ANLC-93 Special Issues of GRL and JGR</td>
<td>77</td>
</tr>
</tbody>
</table>
1. THE CEDAR PROGRAM

The Coupling Energetics and Dynamics of Atmospheric Regions (CEDAR) program has evolved through three distinct phases. Phase I was an initial phase of active planning and organization. Phase II was a phase of collaborative projects. Phase III was a new phase of scientific goals. The CEDAR Phase III Report specifically notes,

“During CEDAR Phase II, no new technology has contributed more to the science goals of CEDAR below 100 km than lidars. These include resonance lidars tuned to various alkali metals near the mesopause and Rayleigh lidars of the backscatter and Doppler type. The broad and narrow band resonance systems provide high-resolution measurements of wave dynamics and, ion-neutral chemistry, (including thin layers), temperatures, and winds in the 80–110 km region. The Rayleigh systems provide important measurements relating to vertical coupling processes. Contributions to CEDAR Phase III science goals will continue from existing instruments, especially as the power and aperture of lidar systems increase with the aid of new technologies.”

The CEDAR Phase III Report identifies the following four science initiatives:

1. Coupling with Lower Altitudes (CLA)
2. Solar-Terrestrial Interactions (STI)
3. Polar Aeronomy (PA)
4. Long-Term Variations (LTV).

The report also presents 27 outstanding science questions that should be addressed by the research community. Lidar studies contribute to 19 of the 27 outstanding science questions. These questions are listed below. The outstanding science questions that CEDAR lidar studies are helping to answer are denoted by the word “Lidar.”

1.1 COUPLING WITH LOWER ALTITUDES

1. What parts of the wave spectrum are most important in determining the thermal structure and energy and momentum budgets in the mesosphere-thermosphere-ionosphere? Lidar
2. To what extent do planetary waves modulate atmospheric tides, and can such modulations of tidal motions in the dynamo region account for ionospheric signatures of planetary wave periodicities? Lidar
3. What roles do waves play in driving the E- and F-region drifts and in the generation of E- and F-region dynamos. Do middle-atmosphere electrical processes such as jets and sprites affect ionospheric electrodynamics? Lidar
4. What is the full role of gravity waves in creating electric fields and in seeding plasma instabilities that dominate space weather effects at equatorial and lower mid-latitudes? Lidar
5. What are the effects of wave transport on chemically active species in the mesosphere and lower thermosphere? Lidar
6. Does tidal modulation of wave fluxes contribute to the observed day-to-day variability in the mesosphere and lower thermosphere? Does it control the global homogeneity in eddy mixing and minor constituent concentrations? Lidar

1.2 SOLAR-TERRRESTRIAL INTERACTIONS

1. How do electric fields, composition changes and neutral dynamics interplay to determine the latitude/longitude, seasonal, local time and UT dependencies of ITM system response? Lidar
2. To what degree do global ionosphere/thermosphere features, including the distribution of irregularity structures, depend on the orientation of the interplanetary magnetic field?
3. To understand the origins of local and regional features in ionospheric and thermospheric structure, what are the required spatial and temporal resolution and accuracy in the determination of energetic sources? Lidar
4. What is the relative importance of thermosphere-ionosphere perturbations due to meteorological influences in comparison to those originating in the magnetosphere? How do these vary with height? Lidar
5. What are the spatial scales and response times of the processes controlling the global electric field distribution?
6. How do ambient conditions influence the appearance of equatorial plasma structures and their evolution?
7. How do soft X-ray/EUV solar fluxes influence the hourly and daily variability of the ionosphere/thermosphere system?

1.3 POLAR AERONOMY

1. How are composition, density and heating influenced by the auroral characteristic energy and energy flux? **Lidar**

2. What are the magnitude and temporal variability of the polar wind?

3. What are the underlying physical causes of the inter-hemispheric differences in observed aeronomic parameters at polar latitudes? **Lidar**

4. What are the dynamical influences on the polar MLT region from the magnetospheric, solar and meteorological sources of energy? What are the roles of chemical heating, LTE and non-LTE effects, ion-neutral chemistry, gravity wave momentum and energy deposition, Joule heating, and energy particle precipitation? **Lidar**

5. How do the relationships between electron density, conductivity, neutral and ion composition, ion convection and neutral winds influence polar electrodynamics? How do they regulate the energy flux between the ionosphere and magnetosphere at high latitudes? **Lidar**

6. What is the time history of electric potential voltage across the polar caps? What is the shape and size of the polar cap in response to this voltage? **Lidar**

7. How does the interaction between large-scale circulation and gravity waves impact the presence of NLCs and PMSEs in the polar regions? **Lidar**

8. What are the relationships between meteoric input, ionospheric plasma and minor neutral layers in the MLT region? **Lidar**

1.4 LONG-TERM VARIATIONS

1. What identified long-term trends can be ascribed to inter-solar cycle variability and which to changes in the atmospheric composition at low altitudes? **Lidar**

2. Are composition changes, temperature changes, or dynamical changes primarily responsible for changes in NLC occurrence frequency? How are these parameters related? **Lidar**

3. What are the cloud physics issues associated with NLCs? What are the condensation nuclei, and does NLC occurrence frequency depend strongly on their variability? **Lidar**

4. Can long-term trends in mesospheric temperatures and winds, distinct from solar cycle effects, be clearly established? **Lidar**

5. In the thermosphere and in the F-region, can long-term trends in neutral density and temperature, peak electron density, and height of the peak be established? **Lidar**

6. Will an apparent trend in upper thermospheric and exospheric hydrogen column abundance persist through subsequent solar cycles?

2. CEDAR LIDAR IN PHASE III

Since the publication of the Phase III Report there has been a vigorous development of lidar science in the CEDAR community. Leadership in the lidar community has been evident in three broad areas:

1. the development of new lidar technologies,
2. the utilization of unique facilities, and
3. the deployment of lidar systems at new sites.

Lidar technology offers the ability to make high-resolution measurements of wind, temperature, aerosol, and minor species (particularly the alkali metals).

The value of these range-resolved measurements has become better appreciated as the CEDAR community's understanding of the physics and chemistry of the middle atmosphere has become more sophisticated. This appreciation has grown further as community understanding of observational and analytical techniques has matured.

The NSF CEDAR program supports six lidar systems with active observation and analysis programs at sites in North America and Greenland. Three additional lidar systems are operated in collaboration with international partners. CEDAR lidars have been operated as part of instrument clusters and have supported multi-instrument campaigns that have employed ground-based, airborne, rocket, and satellite measurements (e.g., AIDA, ALOHA-90, ALOHA/ANLC-93, COQUI-I, COQUI-II, CODA, DUSTDARTS, TOMEX, Maui-MALT, MacWAVE). CEDAR lidars have also provided critical calibration and validation data for other ground-based techniques (medium-frequency [MF] and meteor radars, airglow imagers, etc.) and for satellite observations (TIMED, ILAS, UARS, etc.) These contributions have been reported in over 200 peer-reviewed articles (see the bibliography in the Appendix). The growth in the dissemination of scientific results by the community is evident in the steady increase in published results. The following special journal issues highlight specific scientific contributions:

Lidar measurements with large-aperture, steerable astronomical-quality telescopes (e.g., the 3 m telescope at the Starfire Optical Range and the 4 m telescope at the Maui Space Surveillance Site) have furnished high-resolution wind and temperature measurements. These observations support studies of how gravity waves transport energy in the atmosphere and contribute to the general circulation by providing measurements of the instabilities associated with breaking waves.

CEDAR LIDAR STUDIES WITH LARGE-APERTURE TELESCOPES

CEDAR Lidar Peer-Reviewed Publications

Lidar measurements with large-aperture, steerable astronomical-quality telescopes (e.g., the 3 m telescope at the Starfire Optical Range and the 4 m telescope at the Maui Space Surveillance Site) have furnished high-resolution wind and temperature measurements. These observations support studies of how gravity waves transport energy in the atmosphere and contribute to the general circulation by providing measurements of the instabilities associated with breaking waves.

CEDAR LIDAR PUBLICATIONS

CEDAR Lidar Peer-Reviewed Publications

Number of publications by year.

Lidar studies of middle-atmosphere dynamics have generally been pursued in two distinct ways,

1. Case study observations that capture signatures of tidal and wave events in temperature, wind, and constituent variations. These studies have yielded new measurements of:
 i. characteristics of waves and tides,
 ii. coupling by wave activity of different altitude regions,
 iii. scales and structures of instabilities, and

2. Wave observations that are either diurnal or semi-diurnal. These studies have provided understanding of the local small scales and the satellite has provided understanding of the global large scales.
iv. wave-driven fluxes of momentum and heat.
2. Longer-term observations of temperature and constituents that provide benchmark data for circulation models. These lidar data sets allow the various model components (e.g., heating due to wave-breaking, inter-hemispheric differences in solar radiation) to be tested to match the observations and assess the influence of
 i. long-period cycles (i.e. the solar cycle),
 ii. global-scale events (i.e. volcanic eruptions), and
 iii. long-term trends (i.e. anthropogenic changes).
Furthermore, these high-resolution lidar capabilities have yielded new measurements in support of studies of
 i. noctilucent clouds,
 ii. distribution of minor species,
 iii. coupling of ionic and neutral species,
 iv. electrodynamic coupling between the thermosphere and mesosphere,
 v. auroral influences, and
 vi. meteors.

Lidar systems have also played an integral role in developing synergism between different measurement techniques (e.g., lidars, airglow imagers, meteor radars) and developing new insights into multi-instrument measurements.

2.1 LIDAR SCIENCE STUDIES
As discussed in Section 1, the wide variety of studies that have been enabled by lidar science have directly addressed many of the CEDAR Phase III outstanding science questions. In the accompanying figure we cross reference these specific lidar studies to the CEDAR Phase III document questions for the four science initiatives (Coupling with Lower Altitudes [CLA]; Solar-Terrestrial Interactions [STI]; Polar Aeronomy [PA]; and Long-Term Variations [LTV]). These studies include new observations (1–13) as well as analyses of new lidar techniques (14). For example, “PA4” denotes that the lidar study contributes to the fourth outstanding question of the PA initiative

2.2 CURRENT CEDAR LIDAR SYSTEMS
CEDAR lidars are currently located in all latitudes. Different lidar technologies are used to conduct a variety of studies.
In polar latitudes there are lidars at two sites.
1. Poker Flat Research Range, Chatanika, Alaska (65° N, 147° W): Broadband resonance lidar

In middle latitudes there are lidars at two sites.
1. Colorado State University, Fort Collins, Colorado (41° N, 105° W): Narrowband resonance lidar
2. Utah State University, Logan, Utah (42° N, 112° W): Broadband Rayleigh lidar.

In the tropics there are lidars at two sites:
1. Maui Space Surveillance Site, Maui, Hawaii (21° N, 156° W): Narrowband resonance lidar

Three lidar systems are operated in collaboration with CEDAR researchers.
1. ALOMAR, Andoya, Norway (69° N, 16° E):
 Narrowband resonance lidar, with Institute of Atmospheric Physics and Andoya Rocket Range
2. Poker Flat Research Range, Chatanika, Alaska (65° N, 147° W):
 Broadband Rayleigh lidar, with Communications Research Laboratory
3. Rothera Research Station, Adelaide Island, Antarctica (68° S, 68° W):
 Broadband resonance lidar, with British Antarctic Service.

It is important to acknowledge that the NSF CEDAR lidar...
programs also receive support for instrument development and operation from funding programs in the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense when these efforts support common science goals (e.g., the support of middle-atmosphere satellite programs; the development of new remote sensing technologies).

Lidar systems fall in four main categories with the following measurement capabilities.

1. Broadband Rayleigh Lidars:
2. Hydrostatic temperature profiles (~30–90 km); noctilucent clouds (~83 km)
3. Broadband Resonance Lidars:
4. Mesospheric metal profiles and temperatures (~80–110 km)
5. Narrowband Rayleigh Lidars:
6. Stratospheric and mesospheric wind profiles (~30–60 km)
7. Narrowband Resonance Lidars:
8. Mesospheric temperatures, wind, and metal profiles (~80–100 km).

CEDAR lidars employ a variety of lidar technologies that yield a variety of instrument capabilities. Several of these technologies are relatively mature.

1. solid-state lasers (Nd:YAG and alexandrite),
2. dye lasers,
3. excimer lasers,
4. narrowband filters, and
5. Fabry-Perot interferometer receivers.

Several technologies have been developed by the CEDAR community:

1. continuous-wave (CW)–injected hyperfine pulsed dye laser systems,
2. acousto-optic modulation tuning of lasers,
3. CW-injected and locked solid-state lasers,
4. CW solid-state mixing lasers,
5. Faraday filters, and
6. spectrally tunable receivers.

2.3 LIDAR OPERATION AND MAINTENANCE

In general terms, broadband Rayleigh and resonance lidar systems can be operated by technicians or students at the undergraduate or M.S. level. Narrowband Rayleigh and resonance lidar systems require more sophisticated operators (principal investigator: Ph.D.–level student, post-doctorate or engineer), who may in turn manage a team of trained operators. Principal investigators have developed all the current CEDAR lidar systems with teams of research staff and/or students. Staffs at these sites maintain laser safety and operate the lidar system.

CEDAR lidar systems are generally maintained by the resident research staff. Routine maintenance costs include ongoing replacement of chemicals, gases, filters, and other consumables; annual replacement of optics and flashlamps; and biannual replacement of high-voltage parts. Annual or biannual visits by technicians from the

MULTI-DAY WIND/TEMPERATURE LIDAR MEASUREMENTS

Sodium resonance lidar observations over several days provide wind and temperature measurements for studies of tides and waves. These measurements provide data for quantifying the magnitude and variability of the atmospheric tides and planetary waves, as well as studying wave-wave interactions between different scale wave phenomena. The effort achieve these measurements has spurred a variety of developments in lidar technology.

LONG-TERM LIDAR OBSERVATIONS

CEDAR Lidar observations have yielded long-term measurements of mesopause region (~80–100 km) temperatures. Long-term lidar measurements allow the detection of global trends as well as the response of the atmosphere to the solar cycle and to specific events (e.g., the eruption of Mt. Pinatubo).
laser vendor maintain the long-term performance of the lidar systems as well as providing training opportunities and continuity for students. The scientific laser community is relatively specialized and small, but the industry supports a variety of dealers in laser technologies: flashlamps, dyes, electronics, filter systems, and chemicals. Laser experimenters are experienced in purchasing supplies and parts at substantial savings from these dealers rather than from the laser vendors directly.

The different lidar groups of the lidar CEDAR community have collaborated in a variety of ways:

- Cooperative technical development. For example, the first sodium Doppler wind-temperature system was deployed as a collaboration between the University of Illinois and Colorado State University.
- Donation and loaning of lidar equipment. For example, lasers and telescopes have been loaned by the University of Illinois to the University of Alaska and by Clemson University to Pennsylvania State University.
- Training of personnel at different sites. For example, University of Illinois students have trained at Colorado State University for work in Maui.
- Hosting visiting students to participate in experiments at observatory sites. For example, students from Pennsylvania State University have worked at Sondrestrom and Arecibo; students from Cornell University have worked at Arecibo and Poker Flat.

The complexity of the CEDAR lidar systems varies enormously. The operation of a single zenith pointing broadband Rayleigh lidar system at Poker Flat is considerably less challenging than the operation of resonance wind temperature measurements with the steerable 4 m mirror at the Maui Space Surveillance Site. Furthermore, the operational demands of an experimental program where seasonal measurements are made in an ongoing fashion at weekly or biweekly intervals (e.g., developing a long-term benchmark set of observations)

are very different from the demands of an intensive campaign (e.g., several days of continual day and night observations for tidal studies; successive nightly observations in support of a rocket campaign or the seasonal appearance of noctilucent clouds).

Generally, lidar operators must make laboratory class

Simultaneous lidar measurements of waves in the stratosphere and mesosphere and noctilucent clouds in the mesosphere support studies of dynamic coupling across the stratopause as well as understanding the variability of noctilucent clouds. Lidar observations of noctilucent clouds also support studies of long-term change and dusty plasmas in the atmosphere.

Estimated wave-driven fluxes of sensible heat and associated cooling rates derived from lidar measurements of wind and temperature. Such measurements allow assessment of the contribution of small-scale dynamics to the large-scale circulation of the atmosphere.
measurements in field environments under real-time conditions for long periods. These field conditions are often far removed from the campus laboratory environments envisioned by the laser manufacturer (e.g., aircraft, dry high-altitude conditions, humid tropical conditions). Narrowband lidar systems require moderate environmental control of temperature and humidity. The goal of completely unattended operation is probably beyond reach for the foreseeable future, given the electronic and laser safety issues involved in the operation of lidar systems.

2.4 MULTI-INSTRUMENT STUDIES

A major accomplishment of the CEDAR program has been to bring instruments together in clusters to yield new insights into the middle atmosphere. The collocation of radars, lidar, and imagers has been employed with great effect during focused campaigns (e.g., ALOHA, COQUI) to better study particular phenomena (e.g., wave-breaking events, ion-neutral coupling in sporadic layer events). The success of these campaign efforts is evidenced in the resultant publications associated with these campaigns (see CEDAR LIDAR PUBLICATIONS in Section 2).

Beyond the immediate gain from having multiple points of view of a particular phenomenon, these studies have also spurred new efforts to better combine and interpret observations from different instruments. The combination of airglow images of waves with lidar measurements of wind and temperature has yielded new insights into waves in the mesopause region. The combination of wind measurements made by of wind-temperature lidars and meteor radars has enabled new engineering analyses of these measurement methods; these analyses have improved understanding of the measurement techniques and how they can be best combined.

2.5 STUDENT PARTICIPATION

Student involvement has been a hallmark of research in the CEDAR lidar community; students have participated and provided leadership in the development, deployment, and analysis of lidar systems. Students in the CEDAR lidar programs have the opportunity to participate in the remote sensing process, from the design and operation of electro-optic systems that use basic physical principles to acquire data, to the inversion and analysis of that data to yield information about the atmosphere, and the presentation and integration of that information into current scientific understanding of the middle atmosphere. Much of the leading developments in the CEDAR lidar community have depended on the expertise of students. Their participation has been recognized and appreciated.
by peers in the CEDAR community, employers in electro-
opptics, and juries for professional prizes. Six students
have been awarded the Optical Society of America’s
Allen prize in recognition of their contributions to optical
remote sensing. Several of the CEDAR lidar programs
host summer students under the NSF Research
Experience for Undergraduates program.

3. CEDAR LIDAR BEYOND PHASE III

To make truly fundamental advancements to CEDAR
science, the CEDAR lidar community must,

1. focus the science benefits provided by lidar on the
 scientific needs of the community,
2. develop, apply, and deploy technological advances,
 and
3. critically evaluate, maintain and improve existing
 lidar systems.

3.1 TECHNICAL CHALLENGES

The goal of wind-temperature measurements throughout
the middle atmosphere in both daytime and nighttime
presents challenges to both lidar transmitter and receiver
technologies. The current sodium Doppler wind-
temperature resonance lidars operate routinely and yield
measurements of wind and temperature in daytime and
nighttime with the highest resolution of CEDAR lidars.
This performance reflects the efforts of the research
groups at the University of Illinois and Colorado State
University, who have continually fielded and continually
refined these systems since they were first deployed in
1989.

These sodium Doppler wind-temperature resonance lidars
are capable of making state-of-the-art high-resolution
measurements that will support foreseeable studies of the
mesopause region circulation. However, these lidar
systems have two major limitations: they require in-house
dedicated staff with technical expertise and they are
limited to measurements in the altitude of the mesospheric
metal layers (~80–110 km). A dedicated but moderate
engineering effort would make the sodium Doppler wind-
temperature systems more turn-key through a process of
electronic, optical, and mechanical refurbishment and
refinement. Current engineering efforts are under way to
develop hybrid systems; lasers that replace some of the
dye laser components with solid-state technology.

Resonance temperature systems that employ the hyperfine
spectroscopy of potassium have been developed and
operated routinely at Arecibo Observatory and by the
Institute of Atmospheric Physics at Kühlungborn,
Germany. The systems operate with a lower signal-to-
noise level (and hence resolution) than the sodium
systems, due to the much lower abundance of
mesospheric potassium. These systems could be upgraded
to measure wind as well as temperature but would yield
lower measurement quality than the sodium-based wind
measurements. The University of Illinois developed an

iron Boltzmann lidar with twin solid-state lasers that
excite a ground state and a Boltzmann populated upper
state in mesospheric iron. This solid-state lidar has been
deployed on aircraft as well as at remote locations in
Antarctica. Like potassium-based resonance temperature
systems, this system yields temperature measurements at
a lower-signal-to-noise ratio than sodium. While iron
Boltzmann lidar has yielded temperature studies over both
poles, the lidar cannot be upgraded to measure winds.

In order to address the outstanding questions in middle
atmosphere dynamics high-resolution wind-temperature
Rayleigh lidar systems must be developed to provide
routine measurements of wind and temperature in the
stratosphere and mesosphere (~30–60 km). The primary
technical challenge in Rayleigh systems is to operate
highly stable laser transmitters and receivers without
using the Doppler-free spectroscopic techniques that have
been developed for resonance lidar systems. Rayleigh
Doppler wind-temperature lidars were pioneered by lidar
researchers at the National Center for Space Studies at the
Observatory of Haute Provence, France, and have been
operated at Arecibo Observatory and ALOMAR. The
satellite community has developed a variety of
technologies for measuring wind that have been
integrated into lidar systems making measurements in the
troposphere and stratosphere. The application of these
technologies has not yet been demonstrated in CEDAR
middle atmosphere lidar systems.

High-quality daytime measurements demand stable
narrow-band systems with both transmitter and receiver
stability and very high levels of background light rejection. While the optical quality of large subastronomical-quality telescopes is sufficient for nighttime observations, it is not sufficient for daytime work. In daytime, sub-astronomical-quality optics results in degradation of the performance of the lidar system, due to the scattering of stray light into and signal light out of the detector.

Both the lidar and wider middle-atmosphere communities have come to better appreciate the technical demands of reliable wind-temperature lidar. Certain upgrades are technically straight-forward.

- Rayleigh systems can be extended to lower altitudes via Raman scattering techniques.
- Broadband nighttime systems can be extended into twilight.
- Zenith-pointing systems can be readily upgraded with multiple telescopes to allow nighttime measurements in multiple directions.

In general, however, broadband Rayleigh and resonance systems cannot be simply upgraded to narrowband Rayleigh and resonance systems. For example, while tunable dye laser systems have demonstrated the ability to make Iron Boltzmann temperature measurements at Arecibo and Poker Flat, they are not viable systems for routine operations.

The CEDAR experience at Maui and ALOMAR illustrates that the operation of lidars with complex steerable large aperture telescope systems is not a simple “bolting-on” exercise, but requires a significant (but accomplishable) design effort to yield state-of-the-art performance. In principle there is no fundamental obstacle to the operation of a state-of-the-art lidar system at these remote centers. The challenge of operating lidars at these sites often is not due to the technical effort but to the high cost of research, lack of resident lidar expertise, competition for observing time, and security concerns about university investigators working at DoD facilities. The CEDAR lidar community has not only pushed the technical envelope by addressing new engineering and scientific challenges but also the operational and administrative envelopes by conducting new experiments at these locations.

3.2 SITE STRATEGIES

CEDAR lidar systems have been developed and deployed at sites where existing programs of middle atmosphere observations at that site or in the local region have justified the effort (e.g., Arecibo Observatory, Colorado State University, Poker Flat Research Range, Sondrestrom Upper Atmosphere Research Facility, Utah State University) or where unique experimental capabilities have justified the effort (e.g., Maui Space Surveillance Site, ALOMAR) and resulted in the development of new instrument clusters.

The lidar observations at each site are adapted to optimize correlative measurements with other instruments, measurements of geophysical phenomena, or seeing...
conditions (e.g., intensive observations during rocket campaigns, choice of meteoric metal species to match radar studies, intensive summertime noctilucent cloud observations, intensive springtime polar vortex observations).

While the variety of lidar capabilities makes the observational coverage less uniform than it might appear, the following complementary aspects of the current CEDAR lidar sites are worth noting:

- Resonance wind-temperature lidar systems at Maui and Fort Collins provide opportunities to compare wave activity in the middle of the Pacific Ocean and in the lee of the Rocky mountains.
- Resonance lidar temperature measurements at Maui and Arecibo provide opportunities to compare MLT structures in the tropics that are well separated in longitude.
- Rayleigh and resonance lidars at Logan and Fort Collins provide the opportunities for complementary measurements through the stratosphere and mesosphere.
- Lidar systems at ALOMAR, Sondestrom and Poker Flat provide opportunities for measuring differences in NLC structure across the Arctic and studying the role of different synoptic Arctic and studying the role of different synoptic features (stratospheric vortex, Aleutian high) on the Arctic middle atmosphere.
- The distribution of lidars provides opportunities for studies of latitudinal differences in wave and tidal phenomena (e.g., mesospheric inversion layers, wave observations of wave-breaking events and instabilities).
- The distribution of resonance lidars provides opportunities for studies of latitudinal variations in chemical species (e.g., odd oxygen).
- Antarctic and Arctic lidar measurements provide opportunities for inter-hemispheric comparisons in NLCs, mesospheric metal layers, and middle atmosphere temperature structure.

3.3 NEW CEDAR LIDAR SYSTEMS

A variety of new lidar systems have been suggested for development by the CEDAR lidar community. These suggestions include lidar systems that,

- Exploit resonant scattering from species in the thermosphere and would extend lidar measurements into the E- and F-region. These systems have been demonstrated in paper studies by members of the CEDAR and U.S. Air Force lidar communities. In principle, proof-of-concept experiments could be conducted with current tunable dye–laser-based lidar systems. These systems would yield measurement profiles of excited nitrogen and helium in the E and F

Resonance lidar measurements of the mesospheric metal layers provide high-resolution observations of wave-breaking and overturning events in the mesopause region. These observations support studies of wave breaking in the atmosphere.
• Employ new solid-state technologies that can replace the use of dye laser technology in resonance lidar systems. A system is being developed and tested by the Colorado State University group that would use a new solid-state mixing technique to provide continuous-wave (CW) laser light for use in sodium Doppler wind-temperature lidar systems.

• Combine hyperfine spectroscopic techniques with solid-state technologies. Current acousto-optic modulation techniques could be combined with solid-state iron lidars to yield iron resonance temperature measurements. These iron lidars operating in the ultraviolet (UV) range would also yield strong Rayleigh signals for the retrieval of hydrostatic temperature.

• Employ versatile receiver technologies to allow new Rayleigh wind and temperature measurements. CEDAR resonance lidar developments have primarily focused on the combination of tunable transmitters and fixed receivers. The wider remote-sensing community has developed precision tunable receivers for a variety of applications. Initial feasibility studies are in progress to assess the use of these technologies in CEDAR lidar systems.

• Employ laser technologies with higher transmitted laser powers. Driven by applications in communications and industry, fiber-optic amplifier technologies may eventually increase laser-radiated power by a factor of three to four over current flashlamp pumped lasers. These systems, operating in the near UV range, would allow Rayleigh and Raman lidar systems to make high-resolution density profiles for studies of the troposphere, stratosphere, and mesosphere.

3.4 MOBILE MIDDLE ATMOSPHERE LIDAR SYSTEMS

The development of the Advanced Modular Incoherent Scatter Radar (AMISR) represents a new approach to observational studies in the CEDAR community. AMISR meets the need of modern state-of-the-art incoherent scatter radar that can address CEDAR science issues without being committed to one site. This approach would be of great value to the CEDAR lidar community. Like AMISR, a relocatable or mobile lidar system would allow state-of-the-art measurements at multiple sites without building up a unique capability at each and every site. The lidar could be deployed in support of a focused campaign (e.g., in support of rocket or satellite measurements) or in support of a given geophysical feature (e.g., measurements of polar summer temperatures and winds as part of a noctilucent cloud study). As global circulation models become more precise, the lidar siting strategy would also become more sophisticated. Lidar systems could be sited to confirm likely sources of gravity wave activity or where wave-driven fluxes are most active and geophysically significant and therefore most readily measured.

The development of a truly mobile lidar system demands a commitment to operational engineering issues that is not always required of static facility systems. Limiting issues relate to the size of the telescope systems that could be included in such a system and the choice of technologies that would promote reliable operation. Researchers in other lidar communities (e.g., NASA and Department of Energy (DoE) tropospheric lidar) have addressed these design issues, and several CEDAR lidar researchers feel there is much that can be learned from experience of these other lidar communities.

Combined Rayleigh and resonance lidar observations provide measurements from the lower stratosphere to the lower thermosphere (~20–100 km). These observations support studies of dynamic coupling across the stratosphere and mesosphere.
3.5 CENTERS OF LIDAR EXCELLENCE

It is widely recognized in the CEDAR community that technical leadership in the middle atmosphere lidar community has emerged at several de-facto centers of excellence: Colorado State University (Fort Collins, Colorado); the University of Illinois at Urbana Champaign (Urbana, Illinois); the Institute of Atmospheric Physics (Kuhlungsborn, Germany); and the National Center for Space Studies (Haute Provence, France). These groups have provided leadership in developing new lidar techniques and facilities and have drawn on their substantial institutional and investigator heritage in applied physics and engineering. The university-based research groups have drawn on a pool of talented and motivated students that were resident at the host universities. Technical progress in the community has been greatly facilitated by investigators who have pursued an interdisciplinary approach. These investigators have been committed to developing both the optical engineering techniques as well as advancing scientific questions relating to lidar. The success of the University of Illinois and Aerospace partnership in the rapid development and deployment of the iron Boltzmann lidar was based on winning a major (non-CEDAR) NSF award that resulted in a new robust and state-of-the-art temperature lidar system. The success of the Institute of Atmospheric Physics in maintaining a sustained program of lidar (and middle atmosphere) research and development has been based on its long-term planning and funding as a national center of excellence that engages young scientists of high quality.

With transitions in key personnel at all these centers and the need to develop the next generation of lidar systems, the question has been raised about the need to develop a community laboratory where community resources could be focused rather than developing parallel efforts around multiple single investigators. These collaborative efforts could also include non-CEDAR research centers, for example the National Center for Atmospheric Research (NCAR). In such collaboration, NCAR could host a state-of-the-art lidar system in a programmatically stable environment, analogous to how an astronomical telescope or Class-I radar facility is operated. University collaborators could visit this facility and participate in system development, participate in and suggest observations, and pursue analysis of the data acquired at the site. Such a center would allow investigators (both professional researchers and students) to participate in state-of-the-art lidar research without the need to operate and maintain a lidar system of that caliber at their institution, and so widen the pool of active researchers in the CEDAR lidar community. A similar approach could be negotiated with the stratospheric research community, where NASA and National Oceanic and Atmospheric Administration (NOAA) researchers have established lidar facilities in support of the Network for the Detection of Stratospheric Change (NDSC). CEDAR lidar researchers could collaborate with NDSC researchers to maintain a larger-aperture lidar observatory that supported state-of-the-art observations in support of both programs.

Whether a lidar center of excellence should be established around a single investigator or a consortium of investigators, and whether such a center of excellence should be based in a large-aperture Class-I telescope facility, are open questions. Such a center will emerge naturally as collaborative efforts are initiated to address the need for a mobile lidar or next-generation lidar systems.

3.6 DATA DISTRIBUTION AND ARCHIVING

The CEDAR community infrastructure supports a

RELOCATABLE REMOTE SENSING TOOLS

The Advanced Modular Incoherent Scatter Radar will support a new approach to observational studies in solar and space physics.

DEVELOPMENT OF LIDAR TECHNOLOGIES

Magneto-optic vapor filters (or Faraday filters) are a critical technology for making high-quality daytime resonance lidar measurements of wind and temperature in the mesopause region.
database for the archiving and distribution of lidar data to members of the middle-atmosphere community. The CEDAR workshop provides a unique forum for presenting data sets and discussing and developing analysis techniques and methods. The CEDAR workshop has served as an invaluable setting for initiating collaborative studies, and is expected to continue serving this need for the foreseeable future.

4. RECOMMENDATIONS

4.1 CEDAR LIDAR COMMUNITY PRIORITIES

The existing lidar programs will continue to contribute to CEDAR science, improve system performance and capabilities, and ensure high-quality, high-fidelity measurements. However, to guarantee fundamental advances, this report recommends that the CEDAR community give the highest priority to the following seven areas.

1. Ready access to (or development of) large-aperture telescope facilities.

These facilities will support high-resolution wind-temperature and constituent measurements in the middle and upper atmosphere, and provide the environment for the development of new lidar systems and the refinement of measurement techniques. CEDAR lidar researchers have employed large-telescope facilities at the Starfire Optical Range (3.5 m) in New Mexico, the Maui Space Surveillance Site (4 m) in Hawaii, and the ALOMAR facility (2.5 m) in Norway under a variety of collaborative agreements with the (non-CEDAR) facility administrators. These facilities support state-of-the-art middle atmosphere research where synergism between high-resolution lidar measurements and other instruments (e.g., airglow images, meteor and MF radars) yields new studies of tides, planetary waves, and gravity waves. However, these sites are limited by logistical and programmatic considerations. No open-access large-aperture lidar facility is currently available for routine use by CEDAR lidar researchers in the United States. While these facilities will continue to support lidar-based science, over the long term the development of such a Class-I facility (in a clear-sky location) with associated CEDAR clustered radar and airglow instrumentation would provide unique opportunities for advances in middle atmosphere aeronomy, instrumental development, and student education. A community large-aperture telescope facility would support robust high-signal-to-noise measurements that also would enable the development of new lidar measurement techniques. Such a facility with resident lidar systems could support the participation of a wider pool of researchers in CEDAR lidar research, allowing researchers (both professional and student) to contribute to focused developments and studies without needing to support a complete lidar program themselves. The management of such a facility could be supported by the CEDAR community alone or in collaboration with other corporations or programs (e.g., NCAR or NDSC).

2. The development and deployment of robust mobile lidar systems capable of wind and temperature measurements in the middle atmosphere.

During CEDAR Phase III, the CEDAR lidar community has emerged as a collection of instruments associated (largely) with single investigators at specific institutions with a wide variety of measurement capabilities. Two CEDAR groups have developed robust wind-temperature lidars. These systems are based on resonance spectroscopy and are capable of high-resolution wind and temperature measurements during both day and night. The development of a community mobile wind-temperature lidar would enable the CEDAR lidar community to combine resources and expertise and would guarantee robust state-of-the-art lidar measurements. The mobile lidar system would draw on the laboratory and observatory infrastructure that has been developed at current CEDAR lidar sites. In the development of such a mobile system, consideration should be given to the possibility of deploying the mobile system in aircraft. The value of airborne lidar measurements has been demonstrated during CEDAR Phase III (e.g. ALOHA-90, ALOHA/ANLC-93). Making intensive airborne campaign measurements may be more effective than

AIRBORNE LIDAR STUDIES

CEDAR researchers have deployed resonance lidars and airglow imagers aboard the NSF/NCAR Electra aircraft to make middle atmosphere measurements during the ALOHA-90 campaign in Hawaii, the ALOHA/ANLC-93 campaigns in the Canadian Arctic and Hawaii, and the Leonids-98 campaign in Okinawa. CEDAR lidar researcher aboard the Electra made the first middle atmosphere temperature and Polar Mesospheric Cloud measurements over the North Pole. The adaptation of modern lidar technologies to the new High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream aircraft being developed by NCAR could enable lidar observations to be made anywhere in the world.
establishing a ground-based observatory in some locations (e.g., equatorial regions). Specific consideration should be given to the development of the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) by NCAR. Although it can build on the extensive CEDAR research heritage, the development of truly mobile state-of-the-art wind-temperature lidar systems will require significant technical effort.

3. The development and deployment of Doppler Rayleigh wind-temperature systems to meet the need for measurements of the atmospheric circulation below the mesopause region.

While the CEDAR community has demonstrated excellence in the development of resonance lidar systems for routine wind and temperature measurements in the mesopause region, progress in middle-atmosphere aeronomy demands measurements throughout the coupled middle atmosphere system. Wind and temperature measurements over a wider vertical extent are critical for resolving large vertical-scale tidal and wave features as well as for understanding the propagation of waves through the middle atmosphere. Rayleigh lidar measurements have been demonstrated by CEDAR researchers using a variety of techniques, but routine operational measurements have not been established. The technical challenges of designing Rayleigh systems without the spectroscopic tools used in atomic resonance will require significant technical effort.

4. Support of technical innovation at the level of a center of excellence for lidar research.

The development of a next generation of lidar systems (identified above in items 2 and 3) that are capable of state-of-the-art wind and temperature measurements will require major technical effort and innovation by CEDAR researchers. The development of these advanced systems will require electro-optic development at the level of a center of excellence where CEDAR technological heritage is consolidated, made available to the entire community, and advanced upon. During CEDAR Phase III lidar researchers have made significant advances both as single-institution investigators and as multiple-institution collaborators.

5. Improvements of existing systems, such as enabling daytime capabilities and extending Rayleigh systems with Raman channels.

Current CEDAR lidar systems can be improved to extend their measurement coverage in the diurnal (and, at high-latitudes, seasonal) cycles as well as their altitude extent. Full diurnal cycle measurements are crucial for accurately characterizing the tides and planetary waves in the middle atmosphere and their influences on other phenomena (e.g., gravity waves, inversion layers). Raman capabilities could be integrated into Rayleigh systems to yield hydrostatic temperature measurements at lower altitudes where aerosols contaminate the Rayleigh lidar measurements.

6. The extension of lidar measurements into the thermosphere by the exploration of new species to serve as lidar targets for upper atmospheric research.

CEDAR lidar studies to date have been focused on the lower thermosphere, mesosphere and stratosphere (~15–110 km). Several paper studies (i.e., studies of helium, aurorally-excited nitrogen, and barium) have presented designs of lidar systems for making measurements of thermospheric species. These thermospheric lidar systems have the potential to provide new insights into the composition and circulation of the upper-atmosphere and near-space environments, and to facilitate new experiments with radar, airglow, and satellite systems. While these experimental studies pose new challenges for lidar systems, initial proof-of-principle experimental studies can be attempted with current CEDAR lidar systems. These studies will support the development of operational systems that would allow routine lidar measurements of the thermosphere.

The CEDAR lidar community is a highly focused research community. While the CEDAR lidar community has focused on specific spectroscopic technologies to develop narrowband wind-temperature systems the wider electromagnetic research communities have explored other broadband and tunable technologies to meet needs in the development of high-energy laser systems and communication systems. While these technologies may not be mature enough to provide immediate tools and techniques for middle atmosphere lidar research, the CEDAR community needs to be able to critically assess these developments for possible future employment as they mature. Academic researchers working with students in science and engineering programs can pursue initial efforts in this area. The ability of the community to incorporate appropriate wide-application (or mainstream and presumably large-market) technologies will prove critical for the long-term viability of the field.

The implementation of these recommendations would allow the CEDAR lidar community to obtain,

1. wind and temperature measurements over complete diurnal cycles that are required to understand tidal, planetary and gravity wave fluxes, wave-wave and wave-mean flow interactions in the middle atmosphere,
2. very high-resolution measurements that are required to understand instabilities and other small-scale processes in the middle atmosphere,
3. consistent long-term measurements that are required to study long term trends in the middle atmosphere,
4. new measurements in the thermosphere (E- and F-regions), where they would provide basic measurements of thermospheric composition and circulation,
5. species-specific measurements of both neutral and ionized species that are required for study ion-neutral coupling and MLT electrodynamics, and
6. high-resolution measurements of nanometer size particles that are required for studies of cloud formation in a dusty plasma environment.

These results are required for the advancement of our understanding of the middle atmosphere.

4.2 RECOMMENDATIONS TO CEDAR LIDAR COMMUNITY

This report recommends that the CEDAR lidar community engage in a formal and technical community dialog that addresses the community priorities identified above; specifically, we recommend that the CEDAR community support the following activities at the annual CEDAR meeting in 2004.

1. A dedicated session with panel discussions identifying and prioritizing scientific questions concerning the middle atmosphere that can be addressed by lidar. This session would invite colleagues conducting theoretical and modeling studies of the middle atmosphere to identify critical questions in middle-atmosphere aeronomy and discuss how lidar studies might contribute to answering these questions.

2. A dedicated session with panel discussions presenting technical approaches to developing the next-generation lidar systems that will be employed by the community. This session would invite lidar researchers (as individuals or representatives of consortia) to present critical technical designs for these systems. The session would educate fellow community members about different technical approaches and allow community members to assess the relative capabilities of different approaches. This session would also assist researchers in identifying the need for and scale of specific grant funding opportunities in support of these technical developments.

While meeting the specific needs of the CEDAR lidar the goal of these sessions is also to promote two other critical processes:

1. Discussions between lidar and non-lidar researchers that will increase synergism in the observational programs of the CEDAR community.

2. The engagement of students who are already working (or considering work) in middle atmosphere lidar.

4.3 RECOMMENDATIONS TO THE NSF UPPER ATMOSPHERE RESEARCH SECTION

This report recommends that the NSF Upper Atmosphere Research Section (NSF-UARS) and the CEDAR lidar community work together to accomplish the following:

1. Develop a strategy to ensure continued access to a Class-I large-aperture telescope facility for lidar research (Community Priorities 1 and 4).
2. Create a specific major proposal opportunity in support of next-generation lidar systems (Community Priorities 2, 3, and 4).
3. Support, as appropriate, extensions and improvements to current lidar systems (Community Priority 5).
4. Support, as appropriate, investigations of new technologies and species for middle-atmosphere lidar studies (Community Priorities 6 and 7).
5. Establish a committee, consisting of both lidar experimentalists and middle/upper atmospheric researchers, to develop an integrated research strategy for the CEDAR lidar community (Community Priorities 1–7).
PRIORITIES FOR CEDAR LIDAR COMMUNITY

1. Large-aperture lidar capabilities
 Continue observations at current shared facilities but develop open-access facility in long-term.
 High-resolution studies of wave instabilities, heat and momentum fluxes, trace species and nanometer sized aerosols, in both daytime and nighttime.

2. Mobile wind-temperature lidar system
 Capitalize on current technical expertise to develop mobile system for use at multiple sites, instrument clusters, and/or aboard aircraft.
 Studies of atmospheric phenomena at different latitudes and in different geographical environments.

3. Extended altitude range wind-temperature lidar
 Develop lidar systems that will extend range of wind-temperature systems.
 Studies of coupling between atmospheric regions and of wave propagation and structure.

4. Centers of excellence in lidar technology
 Support technical innovation at a level of excellence that supports design and development of advanced lidar systems.
 Enable exploration of new scientific questions in environment that supports state-of-the-art technological development.

5. Extensions of current broadband lidar systems
 Extend current systems where appropriate to support daytime and/or Raman capabilities.
 Enable studies over the entire diurnal cycle and into lower-altitude source regions of wave and tides.

6. Thermospheric lidar systems
 Initiate studies to develop lidar measurements of thermospheric species for eventual inclusion in operational lidar systems.
 Enable species-specific studies of the E- and F-region to study ion-neutral coupling in the thermosphere.

7. Novel lidar technologies
 Initiate studies to develop new technologies for eventual inclusion in operational lidar systems.
 Support study of novel technological approaches in laser remote sensing to enable next-generation studies of the atmosphere.

Priorities of the CEDAR lidar community that will support scientific progress in the CEDAR community. A technological recommendation (roman font) and resultant scientific outcome (italics) is identified for each priority.
APPENDIX I:
CEDAR LIDAR BIBLIOGRAPHY

106. Hecht, J.H., T.J. Kane, R.L. Walterscheid, C.S. Gardner and C.A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the

170. Senft, D.C., and C. S. Gardner, “Seasonal variability of gravity wave activity and spectra in the mesopause

