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FAST Observations
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Primary Auroral Current

Inverted-V electrons appear
to be primary (upward)
auroral current carriers.

Inverted-V electrons most
clearly related to large-scale
parallel electric fields —the
“Knight” relation.
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Vlasov Equation

The Knight relation [Knight, PSS, 21, 741-750, 1973; Lyons,
1980] is based on the Vlasov equation:

of | af , of

df Jr Jv

The Vlasov equation is an advective derivative in phase space —
phase space density is constant along a particle trajectory
[Liousville s theorem].

Conseguence: Apart from the effect of the loss-cone, the density
of an isotropic distribution is constant along a flux-tube.

Phase space mapping allows us to calculate effect of magnetic
mirror force (W, = uB) and electric field (W + q@ = constant).
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Current Density — Flux in the Loss-Cone

The auroral current is carried by the particlesin the loss-cone.

Without any additional acceleration the current carried by the
electronsis the precipitating flux at the atmosphere:

jo = nev;/2nt? = 1 yA/m? forn=1cm3, T,= 1 keV.

A parallel eectric field can increase this flux by increasing the
flux in the loss-cone. Maximum flux is given by the flux at the
top of the acceleration region (j,) times the magnetic field ratio
(flux conservation - with no particles reflected).

i = nevy/21Y2 x (B,/B.).
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Phase Space Boundaries

Trajectories in phase space defined by conservation of
magnetic moment (1) and conservation of total energy (W +

qP).

For downgoing electrons, W, = 0 at the top of the
acceleration region defines low energy limit — acceleration
ellipse:

W (1-B,/B) + W, = ed

For upgoing electrons, W, = 0 at the ionosphere defines |oss
cone — loss cone hyperbola:
W, (B/B-1) -W, = &P - D)
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Perpendicular Velocity (km/s)

Phase Space Mapping

Theoretical and Observed Distributions
(Ergun et al., GRL, 27, 4053-4056, 2000)
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Knight Relation
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Numerical Results

Static Vlasov simulations =
(Ergun et al., GRL, 27, 4053- T
4056, 2000).
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lonospheric Conductivity

Precipitating electrons modify the ionospheric conductivity.

Robinson et al. [JGR, 92, 2565-2569, 1987] provide
formulas for Pedersen and Hall conductivities:

2 p 40E_ 3 m;.f}:' ﬂ = ().45 E'ZI.ES
16+ E s

where I is the average energy in keV
and @, is the energy flux in mW/m-

These are often used in MHD simulations to modify
lonospheric conductivity, where the number flux is given by
the upward field-aligned current density, |, the Knight
relation givesthe potential, = £, and @, = E .
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Cowling Conductivity

Gradients in the ionospheric conductivities can change the
electric field and current structure within the ionosphere.

Often cited example is the Cowling conductivity (derived
for equatorial magnetic field, but applied to the auroral
lonosphere).

Secondary Pedersen current primary: secondary:
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Secondary Hall current O = W=4a
enhances primary Pedersen @ l x e d ! Iy,
- y, ]P -

current. +'+ + + ¥ 2+ + + y=-a

_ C
20—2p+2h2/2p

June 18, 2002 Robert J. Strangeway CEDAR -12



Cowling Conductivity Inconsistency

Although couched in terms of height integrated
conductivity (), the formalism also applies in terms of

conductivity (o).

Since E,, = o,E,/0, and o,/ 0, depends on z (height),
IE,/0z= 0, 1.e., dB,Jot = O, Iimplying atime-varying .

Alternatively, the primary Hall current could close via
field-aligned currents, modifying the current system
within the magnetosphere.

Thus a non-uniform Hall conductivity reguires a new
field-aligned current system orthogonal to the primary
current system.
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lonospheric Modifications

Haerendel [Adv. Space Res,,
23(10), 1637-1645, 1999]
discusses the effect of proper
arc motion on ionospheric
cavity formation.

Specifically discussesthin arc
formation.
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Alfvén-Fathammar

Alfven and Falthammar [1963] noted that distributions with different
temperature anisotropies will mirror at different altitudes.

Phase space density mapping shows that an anisotropic distribution
becomes more isotropic (T, —> T,) away from the equator. Thusa
distributionwith T, > T, will decrease in density, while T, <T, will
Increase. If ions and electrons have a different anisotropy, then an
electric field will develop to ensure quasi-neutrality.

Investigated by Schriver [JGR, 104, 14,655-14,670, 1999] using a PIC
code. [PIC codes include wave-particle interactions, unlike Vlasov
codes, but it isdifficult to set up a current boundary condition.]

Does not explain why upward current is associated with inverted-V's.
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Return Current
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Space-Charge Limited Flows

The return current is carried by upward electrons. However, the
density profile is strongly controlled by the ions. The density
should vary with a scale height given by k(T, + T;)/mg, but
modified by a downward electric field that opposes the
ambipolar electric field, so as to provide current continuity.

Thus, eventually the electron drift velocity will exceed the
electron thermal speed. At this stage wave-particle interactions
are likely to become significant. The return current region
should therefore be turbulent, with considerable structure in the
electron distribution.
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Pressure Cooker

An additional consequence of the downward electric field in the
return current region isthe ion “pressure cooker” [Gorney et dl.,
JGR, 90, 4205-4210, 1985].

The electric field holds the ions down until perpendicular wave
heating has increased the magnetic moment so that the upward
mirror force overcomes the electric field.

lon conics are therefore a persistent feature of the return current
region.

lon conics are also observed in the primary current region below
the acceleration region, but are folded into beams by the upward
electric field.
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Inertial Alfven Waves

Wygant et al. have published several examples of large
amplitude Alfvén waves observed by Polar at the plasma sheet
boundary layer [e.g., JGR, 105, 18,675-18,692, 2000].

Poynting flux associated with these wavesis 10'sto 100's
mW/m? at ionosphere — enough to power aurora.

Most of the Alfvén wave energy must be dissipated through
el ectron accel eration, since impedance mismatch would reflect
waves if not absorbed.

Chaston et dl. [e.g., GRL, 26, 647-650, 1999] have published
examples of “inertial” Alfvén waves, which could accelerate
electrons.
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Governing Equations

Faraday’s Law: k x E =wb
Ampere’s Law: K xb=—iuj
Frozen in condition: E+U,xB=0
lon momentum: amoU,=ij xB
Electron momentum: —IWj) = W,k

The electron momentum eguation provides the “inertial”
correction to the MHD modes. In particular electron
Inertia can allow the wave to carry a parallel electric field.
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“Dungey Triads’

AB A

Frozen in Condition Ampere's Law

Rules for Triad Combination:

Faraday's Law: b perpendicular to k, E
(i.,e., bin U, B plane)

lon momentum: U perpendicular to j, B
(i.,e.,jin E, B plane)
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Cannot have an E-parallel and still satisfy Faraday's Law
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Shear (Alfvén) Mode

B

Ub

Shear Mode

Shear mode properties
Carries field-aligned current, Poynting flux
No compression

Can have an E-parallel and still satisfy Faraday's Law
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|nertial Effect

Fast mode unaffected by electron inertia.

Alfvén mode modified by inertial effects, and

EJE, =kk, kYo, (1 + Ko,

At middle dtitudes, ¢/w,, ~5km, and E;, ~ 10 mV/m,
resulting in parallel potentials of ~50V for k; ¢ =~ w,.
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|on Outflows

In addition to modifying ionospheric conductivities,
auroral precipitation will also affect ion outflows.

Two processes are known to affect ion upwelling:
collisional Joule dissipation (Poynting flux) and soft
electron precipitation.

Both occur in the dayside cusp — correlative study
using FAST data.
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Outflow Correlations
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Conclusions

Auroral acceleration processes manifest themselves in three ways:
e Primary auroral current —inverted-V
» Return current —ion pressure cooker
« Alfvén wave — boundary plasma sheet

Primary current affects ionospheric conductivity — feedback on
magnetospheric generator, density depletions, ion beam outflows.

Return current — conic outflows, possible conductivity changes associated
with bi-directional electrons.

Alfvéen wave induced precipitation — soft electrons, similar to dayside cusp
outflows.

Not discussed
» Decoupling implied by parallel electric fields (see Borovsky and
Bonnell, JGR, 106, 28,967, 2001).
« Assumptionsimplicit in height integrated conductivity (“thin”
lonosphere), in thick ionosphere current and ion flow vectors rotate.
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