Ionosphere: Past, Present and Future Problems

R.W. Schunk

Center for Atmospheric & Space Sciences Utah State University Logan, Utah 84321

CEDAR Meeting June 23, 2006

Outline

- Ionospheric Environment
- Status
- High Latitudes
- Middle Latitudes
- Low Latitudes
- Summary

Ionospheric Environment

ATMOSPHERE

Diffusion and Wind-Induced Flow Along B

Sojka and Schunk (1979)

Ionospheric Variations

- Altitude
- Latitude
- Longitude
- Universal Time
- Season
- Solar Cycle
- Geomagnetic Activity

Status

- Ionosphere has both a Background State
 (Climatology) and a Disturbed State (Weather)
- Climatology is Basically Understood
- Weather Involves Storms, Substorms, Plasma Structures, Wave Activity, and Plasma Instabilities
- Main Research Focus is on Weather

High Latitudes

Lyons (1992)

Volland Model

2-cell Pattern, $\Delta\Phi$ =40 kV, No Corotation

LABEL	1	2	3	4	5	6	7	8
CIRCULATION PERIOD (day)	1.00	1.01	0.10	1.34	0.50	0.31	0.18	0.11

Geographic Inertial Frame

Sojka et al. (1979)

High Latitude Climatology

Brinton et al., 1978

Storms and Substorms

Ionosphere

- o Increased Convection Speeds
- o Increased Joule and Particle Heating
- $_{\rm O}$ $^{+}$ \rightarrow $^{\rm NO^{+}}$
- o $T_i \rightarrow T_{i\parallel}, T_{i\perp}$

Thermosphere

- o Gravity Waves
- o O/N₂ Changes
- o Enhanced Winds
- o Supersonic Winds
- o Anisotropic T_n

Satellite Images

- Ground Photograph by Jan Curtis.
- FUV Image from the IMAGE Satellite.

Satellite Images

Burch, J. L., Scientific American, 284, 72-80, 2001

- Bastille Day Storm
- July 14-15, 2000
- Snapshots During a 1-Hour Period

Ionosphere Forecast Model

NmF2 UT 0700

Ionosphere Forecast Model

O+/Ne 300 km UT 0700

Neutral Gas Expansion

Ion Polar Wind

Neutral Polar Wind

Gardner and Schunk (2004)

Neutral Polar Wind

Gardner and Schunk (2004)

Noon-Midnight Meridian Flux 6:10 UT

Causes of Plasma Structures

- Changes in the Solar Wind Drivers
- Structured Electric Fields
- Structured Particle Precipitation
- Time Variations in E-fields and Precipitation
- Time Delays and Feedback Mechanisms in the M-I-T System
- Plasma Instabilities

ION DRIFT METER, DE-2 UNIVERSITY OF TEXAS AT DALLAS OCTOBER 17, 1981 1634-1646 UT

1 km s⁻¹

Valladares et al (1994)

Mesoscale Ionospheric Structures

- Propagating Plasma Patches
- Propagating Atmospheric Hole
- Propagating Polar Wind Jets
- Propagating Neutral Streams
- Sun-Aligned Polar Cap Arcs
- Theta Aurora
- Boundary and Auroral Blobs
- Stationary Polar Wind Jets
- Neutral Polar Wind Streams
- Sub-Auroral Ion Drift Events (SAID)
- Storm Enhanced Densities (SED) Ridges

The near-Earth domain composed of the magnetosphere, polar wind, ionosphere and neutral atmosphere. Shown are propagating, supersonic, polar wind jets and propagating atmospheric holes.

Propagating Plasma Patches

- Mesoscale Regions of Enhanced Plasma Density
- Created in or Equatorward of Noon Auroral Zone
- Antisunward Convection with Background Plasma
- Horizontal Extent of 200 1000 km
- Circular or Cigar-Shaped
- Single or Multiple Patches
- Density Enhancement of Few % to Factor 100
- Enhancement Extends Along **B**

Single, Circular, Propagating Plasma Patch

- Gaussian Patch Distribution 1000 km
- Peak N_e Factor 5 Above Background
- F10.7 = 150, Winter Polar Region
- Quiet Conditions, then Southward IMF & 100 kV at Time Plasma Patch Imposed
- Collisional Snowplow
- N_n Depletion in and Behind Patch, Enhancement in Front
- Increased U_n in Patch
- Neutral Gas Upwelling and O/N₂ Changes
- Disturbance Moves Along with Patch

Qaanaaq, Greenland, October 29, 1989

All-Sky Images (630 nm)

2 - Minute Interval

Neutral Density Perturbation

Neutral Gas Perturbations 300 km

- Single, Circular, Propagating Plasma Patch
 - o $\rho_{\rm n} \sim 30-35 \%$
 - o $T_n \sim 100 300 \text{ K}$
 - o $U_n \sim 100 \text{ m/s}$
- Multiple, Cigar-Shaped, Propagating Plasma Patches
 - o $\rho_{\rm n} \sim 30 \%$
 - o $T_n \sim 100 400 \text{ K}$
 - o $U_n \sim 150 \text{ m/s}$
- Comparable to Day-Night Change in the Thermosphere at Mid-Latitudes

MSIS Thermosphere

Noon-Midnight Variation at 300 km Mid-Latitudes

• Solar Minimum, Winter Solstice

$$\rho_n \sim 40 \%$$

$$T_n \sim 45 \text{ K}$$

• Solar Maximum, Summer Solstice

$$\rho_{\rm n} \sim 50 \%$$

$$T_{\rm n} \sim 250 \; {\rm K}$$

Propagating Polar Wind Jet

n(O+): 500 km, winter max

n(H+): 6:00 UT, win max

Mid-Latitudes

Interhemisphere Flow

Evans and Holt (1978)

Darrouzet et al (2006)

Cluster Mission
Plasma Density Structures
Transverse Equatorial Size 20-5000 km

Gauss-Markov Kalman Filter Example

- November 16, 2003
- GPS Ground TEC measurements from more than
 900 GPS Receivers (from SOPAC Data Archive)
- Includes Receivers from:
 - **→ IGS**
 - **→** CORS
 - **→ EUREF**
 - **→** and others

Gauss-Markov Kalman Filter Reconstruction

Climate

Kalman Filter

More than 3000 Slant TEC Measurements are assimilated every 15 minutes.

Gauss-Markov Kalman Filter Example Regional Mode

- 3-D Ionospheric N_e Reconstruction over North America
- •Large Geomagnetic Storm on November 20-21, 2003
- GPS Ground TEC Measurements from more than 300 GPS Receivers (CORS GPS Network + other) over the continental US and Canada
- 2 Ionosondes at Dyess and Eglin
- → Observe large TEC Enhancements over the Great Lakes during November 20, 2003 @ 2000 UT.

Climate

Kalman Filter

About 2000 Slant TEC Values are Assimilated every 15 min

Global Assimilation of Ionospheric Measurements

Utah State University, (435)797-2962, schunk@cc.usu.edu; Universities of Colorado (Boulder), Texas (Dallas), and Washington

Schunk et al. (2005)

Eastward Electric Field Uplifts Equatorial Ionosphere

Poleward SAPS Electric Field Strips Away Outer Layers of Plasmasphere

Foster et al (2004)

Low-Latitude Ionosphere

- Equatorial Anomaly
- N_e Variability
- Spread-F/Plasma Bubbles
- Rayleigh-Taylor Instability

IGRF Magnetic Field

Snapshot of modeled electron densities at 300 km and 12 UT displayed in a geographic coordinate system. The electron densities were calculated from the Ionosphere-Plasmasphere Model (IPM) and are shown along geomagnetic field lines.

Effects of Diffusion, Electric Fields, and Winds on the Low-Latitude Ionosphere

F-region Ionization Transport Process With the Transequatorial Wind

Equatorial Fountain

Hanson and Moffett (1966)

Low Latitude Climatology

Bilitza et al. (1993)

- International Reference Ionosphere (IRI)
- $f_o F_2$ for solar Maximum, Equinox and UT=0

GPS/MET Satellite

Equatorial Profiles

 $-5^{\circ} \le \theta \le 5^{\circ}$ 1200 < local time < 1400

 $-5^{\circ} \le \theta \le 5^{\circ}$ 2000 < local time < 2200

Equatorial Plasma Bubbles

- Vertically Elongated Wedges of Depleted Plasma
- Entire North South Extent of **B** Depleted
- Up to Factor 1000 Depletion
- Bubble Apex Altitudes Between 500 1500 km
- Typical Bubbles: 100-500 m/s up
- Fast Bubbles: 500 m/s 5 km/s up

1 km/s horizontal

Spread F/Equatorial Bubbles

Argo and Kelley (1986)

Equatorial Spread-F and Bubbles

JULIA Coherent Scatter Radar

- DMSP F10 Satellite
- 234 E Longitude, 19.7 MLT, 117 SZA, 750 km Orbit
- Typical Bubbles: 100-500 m/s up
- Fast Bubbles: 500 m/s 5 km/s up

1 km/s horizontal

Neutral Density (top) and Temperature (bottom) Perturbations due to 4 Plasma Bubbles

300 km

Golden Age of Aeronomy

- Large Amount of Data Available
- Access via Virtual Observatories
- Data Assimilation Models
- Coupled Physics-Based Geospace Models
- Community Coordinated Modeling Center (CCMC)
- Elucidating Mass, Momentum, and Energy Coupling in the M-I-T System at Global, Regional, and Local Scales will be Possible
- Rigorous Inclusion of Instabilities in Global Models will be Possible