ISR perp. to B

Erhan Kudeki — ECE, UIUC

June 2006
Incoherent-scatter spectral models for modes propagating k|
perpendicular to Earth’'s magnetic field B will be described. N
B,

Outline:

e Motivation: Why “perp. to B ISR" is important?

e ISR tutorial: to establish a setting needed for the discussion
of perp. to B issues.

® Recent results on the effect of electron Coulomb collisions
(1996-2004).

e 3-D modeling of collision effects — also in Milla and Kudeki ;
[2006] pOSter. YT
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Why “perp. to B ISR theory” is important?

Because:

e Perp. to B" is the natural look direction for equatorial
ISR (JRO, ALTAIR, AMISR(?)) vertical drift measurements.

e ISR spectrum is very different at small aspect angles «,
close to perp to B — familiar double-humped shape
disappears as “overspread” scatter turns into “underspread”
in a — 0 limit.

e Different spectral shapes correspond to different micro-physics

dominant at different aspect angles.

e ISR theory had to be revised a number of times (over the last
40 years) in small-a regime to match the increasingly refined
new observations coming from JRO — we are currently going
through another round of revisions.

e Revisions are related to difficult issues in plasma physics
concerning collisions and thus the results could have “broader ;
impact”_ YT



e ISR spectrum narrows down to “almost a
delta’ as o — 0, which is wonderful
for high-precision drift measurements using
“periodogram” techniques.

e A better understanding of the ISR spectrum
for small-ac opens up the possibility of
density and temperature measurements that

accompany drift observations — practical
impact.
e Perp. to B direction is also the natural

direction to observe field-aligned plasma
instabilities — e.g., spread-F, 150-km echoes,
electrojet in the equatorial ionosphere.

e Joint studies of the
surrounding ionosphere can be conducted by

using perp.
practical reason.

instabilities and

to B radar beams — another

Now the tutorial ...

JRO ISR
a - LA L ......... .|| F
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using differential phase method [Feng et al., 2004]
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such observations have lead to significant progress
in  explaining  bottom-type spread-F  [Kudeki and
Bhattacharyya, 1999] and shear-driven seeding of spread-F
bubbles [Hysell and Kudeki, 2004]



First degree of «a:

From Milla and Kudeki poster [2006] showing the results of brand new collisional ISR
spectrum calculations using a 3-D random walk code — just in case | get stuck in the tutorial
and run out of time:

Re{Je(w)} at 50 MHz: Re{Je(w)} at 500 MHz:

Electron Gordeyev integral (Ne=1 E12m_3, Te=1OOOK'7‘B=3m) Electron Gordeyev integral (Ne=1 E12m_3, Te=1000K, )»B=0.3m)
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. . . . for 0.25 to 0 deg aspect
Unless electron Coulomb collisions are included in the theory, the narrowing of the spectrum angles the results are

in @ — O limit is not properly modeled. — Now the tutorial, really ... totally new at 50 MHz...



Thomson scatter from a single electron

Oscillating free electrons radiate like Hertzian dipoles:

. r . 6_
jwot __ € j(wot—2kor)
Hae o Hie ‘:‘?:\ J(wot—kor)
« ~F; e
is the electric field "backscattered” or “radiated back” from \/f:\‘
a single electron at a distance 7 in response to an incident \:/\-‘
field (real parts are implied in both expressions) ; T~
. /
Eiej(wot—k:or) y
; T
of frequency w, and wavenumber k, = “’—CO = i—”; / TR
o \% ] = —1
e? ~15 A
re = ———5 ~ 2818 x 107 m R
4mTeome R
is a fundamental length scale known as classical electron I
- y B, el
radius. S



Backscatter from a small volume of electrons

Backscattered field envelope from a small volume AV centered

at r = r7 containing P free electrons at an average-density of
N, = P/AV is the simple sum

NOAV’I" r NoAV
e —72k e k-
E, = — Y SEpe o g Y NP

The paraxial limit on the right is valid for » > 4AV2/3/>\0
(effectively the far-field condition for an antenna of size AV'Y/3
and wavelength A, /2) while

k = —2k,7,

known as Bragg vector, is the scattered minus incident wavevector
relevant to scattering volume AV




Particle trajectories r,(¢t) and density-waves n(k,?):

The scattered field varies with time as

r NoAV . r
Es(t) — __6EZ Z ejk-rp(t) — __eEZ ’I’L(k, t)
T p—1 T

where
NoAV

n(k,t) = Z eIk Tp(t)
p=1
is the spatial Fourier transform [ dr n(r,t) /%" of

NoAV

n(r,t) = Z O(r —rp(t)),

p=1

a number density function defined for electrons with
trajectories r,(t).

Note: Normalized variance

1 2
— k,t
in AV — oo limit (meaning

AVY3 > 4 few correlation scales) is
the spatial power spectrum of density
fluctuations due to random trajectories

rp(t).

Density  space-time  spectrum s

(likewise) the Fourier transform of
normalized auto-correlation (ACF)

L
A—V<n (k,t)n(k,t + 7))

of n(k,t) over time lag 7 (see next

page).



“Soft-target’ power spectra
2
Te re
Ei(t) = ——Eink,t) = (|Bs(0)]”) = ;IEil2<IN(k,w)l2>AV

in terms of electron-density space-time spectrum

NoAV

(|n(k,w)|2> — /dTe—ij <Z —]krp(t) Z jkI‘p(t—I—T)>

Also the total power collected by a radar antenna with an
effective aperture A, — adding the spectrum over all frequencies
w /27 and subvolumes AV — is (open-bandwidth case)

2\ - .
dw |E; |2 /2n, 9 5 {|n(k,w)|*) is the F.T. over time lag
br = / oI /dV r2 Aerg(|n(k, w)|”) —Radar eqgn. 7 of the normalized ACF

1 *
A—V<n (k,t)n(k,t 4+ 1)).

Above and elsewhere, angular brackets ( and ) around a random variable imply

an expected value or ensemble average.



“Soft-target’ power spectra

B(t) = —Bink t) = (B)) = ZE(nl0)HAV

in terms of electron-density space-time spectrum

(In(k, w) |2> = / dTe_]wTA—V< Z G_Jk'rp(t) Z ejk-rp(t+7')>
p=1 p=1

— NO/dre_jm<ejk'Ar> = (Inge(k, w)|?),

assuming that electrons follow random trajectories with
independent displacements Ar = r(t + 7) — r(t). But the

assumption is not valid, and its direct consequence (in thermal
equilibrium)

2

__w
<|ES(W)|2> S8 <|nte(k,w)|2> e /dTe_jWT<e]k'VT> x e 27€2ng

a Gaussian radar spectrum of a width oc electron thermal speed
C. — original expectation of Gordon [1958] — is not observed.
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because of “collective effects " due
to polarization fields (spectra for 41
MHz observations of Bowles, 1958).



Including the “collective effects”

If there were no collective effects

® spectrum of electron and ion density fluctuations in the plasma would be
2 - ' ik-A
(Inte,i(k, w)|”) = NO/ dre 77 (e et
— o0

with
— N, average plasma density
— Ar.; =r.i(t +7) —re;(t) independent particle displacements
e of course there would also be random current densities ”%e(nti — Nye)" and

space-charge fluctuations “e(ns; — n4. )" satisfying the plane-wave continuity
equation across k-w space

Collective effects come into play because space-charge o< my; — e requires (via
Poisson’s equation) a longitudinal electric field E (parallel to k) which, in turn,
drives additional currents o, E and o; E to force the total current, including the



displacement current jwe,E, to vanish; thus
. w
(Jweo + 0+ 03) E + Ee(nm — nNge) =0

so that Ampere's law applied to longitudinal (space-charge) waves (influenced by
collective effects) is satisfied.

One of the solutions of this "KCL equation” — obtained with the aid of an
equivalent circuit model shown below — is the electron-density wave amplitude

_ (jweo + O-i)nte(ka (,U) 4 Uenti(k, w)

n(k, w) : ; ,
Jwey, + 0e + 0 JwWe, + 0¢ + 0
E >
: 4
w ¢ ),
. . . —€ N,
a weighted sum that can be interpreted in terms ! ——€n
of “shielded” versions of thermally driven densities | <¢>
nte and nyg; — shielding reduces the overall waO__ 0 Oe
space-charge by a factor |1 + xe + x| > 1, fe N
where X ; = 0 ;/jweo are electron- and ion- k

susceptibilities. _—]——_

10



x 10

-4

41 MHz, T=1000 K, atomic oxygen

= jon line
- glectron line|]

]\

We have expressed the actual electron density fluctuation in the plasma in 6
terms of independent random variables n;. and my;; thus, upon squaring and ]

averaging the expression we find that electron density spectrum % :
3

(e, w2y = 1@ T ol neele )*) | ol (Inal, w)I*) 42

jweo + o¢ + 042 jweo + o¢ + 042 b

%

a sum of electron- and ion-lines, proportional to (|ne ;(k, w)|?), respectively.

The spectrum formula above is a very general result which is valid with
any type of velocity distribution (i.e., Maxwellian or not). It can be modified in
a straightforward way to treat the multi-ion case. It is also valid in magnetized plasmas in
electrostatic approximation — i.e., for nearly longitudinal modes with phase speeds w/k < ¢
— with 0. ; = o i(k,w) denoting the longitudinal component of particle conductivities.
However, to use it we need accurate knowledge of all o, ;(k, w).

Fortunately, there are some wonderful /inks between conductivities o ;(k, w)

ejk-Ar

and ~statistics of particles that we can use.

11
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Links

First, according to generalized Nyquist noise theorem [e.g., Callen and Greene,
1952], mean-squared particle current due to random thermal motions is (in the
particle frame)

w2

¢ (Ineei(l, w)[*) = 2K T iRe{oe,i(k, )}

per unit bandwidth, per species, so long as each species is in thermal equilibrium
(i.e., have a Maxwellian velocity distribution) at a temperature’ T} ;.

) —
:6 i —C]:e n
jwe, T i [:| Oc [:|
w w
Ee Tt _Ee Nte

2
1\hen Te =T; =T, ie., in case of full thermal equilibrium, (]':—262<|?’L(k, w)|2> = 2KTRe{o¢(k,w)}

with o representing the Thevenin admittance of the equivalent circuit looking into the opened electron branch.

12



Second, as a consequence of causality, imaginary part Im{o ;(k,w)} of
conductivity o (k,w) is the Hilbert transform of Re{oe i(k,w)}, a general
rule known as Kramers-Kronig relation which applies to all Fourier transforms of
causal signals that vanish for t < 0.

The upshot is, in a plasma in thermal equilibrium, all parameters needed to
compute the electron density spectrum can be deduced from

<€jk~AI‘€’i>

Y

characteristic functions of particle displacements Ar, ; in the absence of collective
effects. We will call them “single particle ACF's" in the following discussions.

13



What we have seen so far was distilled from a number

of different approaches to incoherent scatter problem
worked out during the 1960’s:

Farley and co-writers derive o, ;(k,w) from plasma kinetic theory (Vlasov equation) and
then use the Nyquist formula to obtain (|n4. ;(k, w)|?).

Fejer does both calculations independently, not using (but effectively re-deriving) the Nyquist
formula.

Woodman takes yet another approach, including steps involved in the proof of the
generalization of Nyquist theorem by Callen and Greene [1952], but not using Nyquist's
formula explicitly.

Hagfors and collaborators first calculate <|nt6’¢(k,w)|2> from (ejk'Ar“f”i) and then
“dress” the particles making up ne ;(k, w) with o, ;(k, w) dependent “shields” to obtain
the expression for electron density spectrum — Nyquist formula is effectively re-derived.

These pioneers have handed us (the current generation
of ISR users) a ...

14



“Standard Model”

Js(w) = / dr e 7T (e’ 2) - Gordeyev integral, a 1-sided F.T.
0

for species s (e or ¢ for the single-ion case), and use

([res (e, w)[*) Re{Ju(ws)}  and os(k,w) 1 — jwsJs(ws)
0 e jwe, k2h?2 ’

where ws = w — k - Vg is Doppler-shifted frequency in the radar frame due to

mean velocity V4 of the species and hy = \/eoKTS/Noe2 is the corresponding

Debye length. In terms of above definitions, electron density spectrum of a stable
Maxwellian plasma is

<‘7’L(k w)|2> _ |jwe0+0i|2<|nte(k7W)|2> |O-6’2<|nti<k,(,U)’2>
, |jw€0+0-e+0'i|2 |jw€0+o-e+o-i|2.

The model takes care of macrophysics of incoherent scatter — microphysics
details need to be addressed within single particle ACF's (e/%A7s).

15



Single particle ACFs (e/kAr) = (eik (r(t+7)=r(?)))

are the centerpiece of Standard Model — their Fourier transforms or Gordeyev integrals (obtained
numerically in most cases) provide us with the conductivities and spectra of all species in a plasma
(in thermal equilibrium).

Ar=vz In general, if Ar, component of Ar along k, is a Gaussian random variable, then
jk-Ar — k% (Ar?)
(e ) =e :
rt) fet +7)
Example: In a non-magnetized plasma particles move along straight line trajectories (in between
collisions) with velocities v and thus
Ar = vT;
10 hence
s Ar =vr = (Ar2> = (112>7'2 = C27'2,
£ for a Maxwellian (required by Standard Model ) distributed v along k with an rms speed
w1 1/2 = /KT /m = C. Thus, in a non-magnetized plasma
_04 (D/ZKO(KHZ) 4 2 2 2
K. _1
and  “Ohmic" o's <e*7k Ar> — gh“Cor
because of Landau
damping (inherent to so long as “collision frequency” v is small compared to kC' — i.e., if an average particle moves a
Std. Model). distance of many wavelengths 2]: in between collisions.

16



Collisional D-region
spectra from JRO:
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Chau and Kudeki [2006]

In a collisional plasma (Ar2) = C?72, special for free-streaming particles, stays

1

valid until “first collisions’ take place at 7 ~ v~ ~. For v > 1, collisional

random walk process leads to (Ar2) o 7 instead of 72, and more specifically,

over all T,
- ¢ e_%k’ZCQTQ, L < kC
<Ar2> — —2(V’7'—1—|—€_VT) = ACF = ¢
v 1202
e 7 . v>kC

if a Brownian-motion model is adopted for collisions. Using the high-collision
approximation above (which is not sensitive to the choice collision model, e.g.,
Brownian, BGK, etc.) a Lorentzian shaped electron density spectrum pertinent to

D-region altitudes can be easily obtained (mainly the “ion-line"):

(In(k,w)?) _ 2k*D;
N, w2+ (2k2D;)?

in kh < 1 limit (wavelength larger than Debye length) with D; = C’,?/yi =

KT;/m;v;, ion diffusion coefficient.

17



However, a complete D-region model should require a multi-ion formulation including negative

ions [e.g., Mathews, 1978].

Generalizations:

Using the above result, it is easy to show that

° dw N
2\ _ 2 o
(Inw) = [ Snk0)?) = =2,
oo 2T 2
which is in fact true in general — i.e., for all types of plasmas

with or without collisions and/or DC magnetic field — so long
as Te = T; and kh < 1.

This result in turn leads to a well-known volumetric radar cross-
section formula for incoherent backscatter (valid under the same

conditions):

amr?(|In(k)|?) = 27r2N,.

Only for kh > 1 we obtain (|n(k)|?) = No.

18
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Plasma with a DC magnetic B,
(eTKATY = (I FIBTTRLAP)y — (T AT oIk LAPY,

where Ar and Ap are particle displacements along and perp to B, on k-B,
plane.
Assuming independent Gaussian random variables Ar and Ap, we can
write
: 12/ A2 1,2 2
<€]k-Ar> e 2k:||( ) e—ij_(Ap )
in analogy with non-magnetized case. The assumptions are valid in the absence

of collisions, in which case

4C*?

QQ

(Ar®Y = C*1°  and  (Ap°) = sin®(Q27/2),

where € is the gyro-frequency and periodic (Ap2> is fairly easy to confirm in
terms of circular orbits with periods 27 /€2 and mean radii v/2C /2.

19




After Sept 94 MISETA
experiments we
started applying the
same spectral

Thus analysis to SpF and
' ISR data...
FehddhdddddddedededededededRhn
2 ~2
2k C~ .
jk-Ar ~1k2C272 L sin?(ar/2) **The new method
(e ) = e I X e Q provided much

better precision and
resolution than the

Spectrum examples: ACF methods used in
the past".********
Large « : the usual ion-line Small a:: “electron-line” with a reduced width But, our efforts to fit
0.50 T T T T T ' T " ' Te gave
(from Kadek o , 1999]] Channel 1 - 2004-06-08 14:25:00

1000 unrealistically low

¢ € results, at least by a
§ 0.30f E g B
i & 800 factor of 2
%‘L 0.20F E 2 1 =
& 8 < 600
010f 3 7 S
\H_; 2 And then there was the
~C T 400 . .
000 e T 1 L
0 500 1000 1500 2000 2500 3000 0 50 T&;\T 200 pUZZIe of Te<Ti belng
Doppler Velocity (m/s) Doppler Velocity (m/s) e Sti mated at 2 d eg Off_
Figure 1. Incoherent scatter Doppler spectra for Figure 2. Same as Figure 1, but for a = 200 c
a = 30°,60°,90° are shown in a superposed form. The 0.005°,0.01°, 0.015°. 0.02°. The tallest curve corre- perp ——- since the 60's,
curves represent an O™ plasma with T, = T; = 1000 K sponds to a = 0.005° and the broadest curve to a = -100 0 100

and a radar carrier frequency of 50 MHz and are essen- 0.02°
tially indistinguishable at the scale of the plot. e

in fact ——- with major
efforts put by Pingree
[1990] to understand

Note, the ACF above becomes periodic and the associated spectra are singular (with delta the reason
functions) in k” — 0 limit. Singularities are not observed in practice and it was recognized early
on to include Coulomb collisions — electrostatic interactions of neraby particles within a Debye
length not covered by collective effects — in the theory [Farley, 1964]. Examples above were
obtained with collisional equations of Woodman [1967] that includes ion-ion collisions.

Velocity (m/s)
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A collisional /magnetized model, consistent with independent and Gaussian Ar and
Ap assumptions, is obtained with

202

(Ar2) = —wr—-1+ e V7)),
v ) Effective (velocity averaged) Coulomb
9 B 2C —ur collision frequencies for a singly ionized
(Ap7) = m(cos(Z’y) TyT —e cos(Q2r — 27)), plasma (after Spitzer, 1958):
o -1 . . . . 4 3
where v = tan™ " v /Q — first derived by Woodman [1967] using what is _ 4V27wN;e* In(12w Nehy) N;
effectively a Brownian motion model in the presence of By. In perp to B, limit: ¢ 3(4reo)2/meT? > Te3/2’
2~2
; k2O (cos 2v)+vr—e YT cos(QT—2~
<€‘7k'Ar> — e 92+V2( ( ( ) (v) 47TNZ€4 In A TneTe3
v(v) = v; = ¢
(4mep)2m2v3 2mz’TZ.3

is non-periodic, ion resonances go-away, electron-line is broadened:

=0 ‘, :
lon-line gyro- '
0’ resonances i electron-line is
L o 06
O <
<o are §” broadened to ... but what we
= d g k202 /02 wanted at that point
suppressed. Ve o/

was spectral
narrowing, not
broadening !!!

1 15
Qt/2n

21



While electron collisions cause spectral broadening at &« = 0 (by enabling cross-field diffusion), their effect turns out to be in
the opposite direction at small but non-zero o because of parallel-dynamics:

( C’2 2

202 || , UL k”C — free streaming

” (vr—1+e ¥7)

1202
~ e “ T, v> k) C —diffusion limit

h‘ = | k Ms-m

e A e e hd
i !

\

® first line above, valid at larger o or k”, accounts for the usual narrowing
. _ - ALVA L e
of electron-line with decreasing « in the absence of collisions, Y

T S A Ty A

gt W-\N‘T@%FJ*A"* 380

.. . . . . . . . . . . o i P a0
to collisions, just like in D-region narrowing of ion-line with increasing v i j“t*“, .

i T
R VR 1 1 H 0

[N TR
P

® the second line, valid for smaller «, predicts additional narrowing due

- W e o

Locul Tene thours)

— basically, collisions impede motion along B, lengthening correlation ... s /7 orseecto heigs on une 1.
17, 1988, using the 3° antenna position (adapted from Pin-
gree [19907]).

times and narrowing the corresponding spectra. However, the narrowing
effect is still quite weak at o ~ 2° when the Brownian collision model is from Aponte et al.  [2001], illustrating
used. Te/T; < 1.

Sulzer and Gonzalez [1999] conjectured that a proper treatment of electron Coulomb collisions should do the job — i.e.,
eliminate non-physical results of Te < T inferred from JRO F-region data taken at o &~ 2° [e.g., Pingree, 1990] — and

proved their point by simulating the Coulomb collision process for electrons.

22



Sulzer and Gonzalez [1999] & Woodman [2004]:

The Brownian motion model is based on an assumption of constant collision/diffusion
coefficients in a governing “Langevin equation” — a 1st order stochasic differential equation
governing electron velocity v(t) [e.g., Gillespie, 1996] — whereas, “in reality”, the coefficients
for Coulomb collisions are v(t) dependent. Thus in reality the equation for v (%) is non-linear,
causing the statistics of v(¢) and its time integral Ar to become non-Gaussian. To address this
difficulty and explore its implications, Sulzer and Gonzalez [1999] computed the electron ACF

(ejk'Ar) numerically using a Monte Carlo approach:

The positions and velocities r(t) and v(t) of simulated electron
motions were updated at At intervals with increments

Velocity Increment (m/s)

Ar = vAtL

3 4
Velocity (mis) <105

an d Figure 2. Functions derived from the diffusion coefficients for electron-clectron collisions. The
horizontal axis is the el and the vertical is Av.

horizo ectron velocity (m/s x 10%)

Av = KAt + v, i P

where dv is a Gaussian random variable with v and At dependent

Velocity Increment (in/s)

moments — derived specifically for Coulomb collisions by Rosenbluth
et al. [1957] and others dating back to Chandrasekhar [1942] — L e S

and K is a deterministic external force per unit mass.

23

Figure 3. The same as Figure 2 but for electron-ion collisions.



w10*

Velocity Increment {m/s)
o

glectron-electron collisions

faav? ,,

Ve

Yelocity (m/s) w105

d{Av Me T
S oty (1425 6) (19
di(Avy)? /
-—-—-————{((ﬂ]Ij ) = 2@[&0) (]4)
) - 22 gy -cumy (1)
where i ‘n.fe* A i
D= W. ( )

Ap differs from the definition of Spifzer [1962] only in
that the units have been changed from cgs to MKS.
Also Z} = 1y /2kT; f designates the field particles, the
ones being collided with, either e for electron or i for
ion, while m, refers to the test particle which is always
an electron. We have assumed that all species have a
charge number of 1. Finally,

(@)= £¢'()

Ga) - 2= 2E) ()
where g e \
dlz)=— [ e ¥ dy (18)
TE Jo

The update equations above constitute jointly the Langevin equation of a multivariate
Markov process (non-linear and non-Gaussian) consisting of the components of r(¢) and v(t).
Estimates of ACF (ejk'Ar> were formed as the inverse Fourier transform of power spectra of

synthesized time-series eIkr(t) |y spectrum calculations standard FFT methods were employed,

just like in radar data analysis. A library of Gordeyev integrals derived from simulated (e

is used ultimately for density spectrum calculations.

24
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e Simulated versus collisionless spectra show considerable differences at small

aspect angles «, enough to correct the T,./T; problem at «

measurements.
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Woodman [2004] re-examined the Brownian model and — agreeing with the

main findings of Sulzer and Gonzalez — developed an empirical collision-
frequency model v, = v () that gives the best fit of Brownian spectra to

Sulzer and Gonzalez [1999] simulation results.
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Woodman model v, = v, () effectively extrapolates the Sulzer and Gonzalez
simulation results from o« = 0.25° to 09 and is convenient to use in place of
the Sulzer and Gonzalez Gordeyev library.

16
14 &
.'d-
12
A
10
o
278 ] :
Z'e e
R+
B - g o N=2 10% fem*3, T=1000 K
o]
E‘D'D & N=1 10% Jom*3, T=1000 K
4 cﬁﬁﬁa 2 N=5 10°Gfpm#*a, T=1000 K
2 g o N=1 10%6/em*3. T=600 K
0
0 1 2 3 4 5

sin { fein g,

Fig. 6. Same as in Fig. 5 but both the collision frequency and
the angle (actually sinf) are normalized with respect to vy and
sin ., respectively. The dotted line i1s a cubic regression it
representing Eqg. (14). The points corresponding to 67 (right
most in any sequence) are not included in the fit.

with sin 6, = % = %”:
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Highlights of Milla and Kudeki [2006] poster:

e Studies described in Milla and Kudeki [2006] aim to:

explore the goodness of Woodman's v. = v.(a) model in o« — 0 limit and
at radar wavelengths other than 3 m for which the model was developed,
improve the model if needed

e by using the same methodology as Sulzer and Gonzalez [1999], except for:

include finite gyro-radius effects by doing 3-D computations of particle orbits
instead of 1-D (parallel B,) computations
extend the computations all the way to a« = 0.

e Initial results:

agree with Sulzer and Gonzalez [1999] results except for a minor offset
(710% near spectral peak as @ — 0.25°) the source of which was
identified in Sulzer's code — a typo that replaces some v/2 by /7 /2.
Woodman's v, = ve(a) model inherits the offset just described but
otherwise agrees with the simulated spectrum variations as o — 0.

Woodman's v. = ve(a) model needs “retuning” at other radar wavelengths
(that is, other than at 50 MHz)
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Last 1000 millidegrees of «:

Re{Jc(w)} at 50 MHz: Re{Je(w)} at 500 MHz:
Electron Gordeyev integral (Ne=1E12m 3, Te=1000K, hg=3m) Electron Gordeyev integral (Ne=1E12m™>, Te=1000K, hg=0.3m)
1 1
0_9 1 09 B
0.8 0.8F
0.7 0.7
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o T o
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5 % 5
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7] ()
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Note how (|n¢e(k, w)|?) o< Re{Je(w)?} narrows down more rapidly at 50 MHz than at
500 MHz as approaches o« = 0.

A “testable” prediction using a pair of ISR's — VHF and UHF — near the magnetic equator:
ALTAIR or, alternatively, JRO/AMISR combo.
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Last 500 millidegrees of «a:

Re{Jc(w)} at 50 MHz: Re{Je(w)} at 500 MHz:

Electron Gordeyev integral (Ne=1 E12m‘3, Te=1000K, }»B=O.3m)

Electron Gordeyev integral (Ne=1 E12m'3, Te=1000K, XB=3m)
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Note how (|n¢e(k, w)|?) o< Re{Je(w)?} narrows down more rapidly at 50 MHz than at
500 MHz as approaches o« = 0.

A “testable” prediction using a pair of ISR's — VHF and UHF — near the magnetic equator:
ALTAIR or, alternatively, JRO/AMISR combo.
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More detailed comparisons show that:

Brownian motion based ion-Gordeyev integrals match ion Monte Carlo results very well using
for v; the effective Coulomb collision frequency (due to Spitzer) for ions given earlier. This
finding is consistent with the success of Woodman [1967] theory in showing the absence of
ion gyro-resonance effects.

Monte Carlo results for electron displacements Ap transverse to B, exhibit a Gaussian Ap
with a variance (Ap2) matching well the Brownian motion model using %I/e for v, where
Ve is the Spitzer collision frequency for electrons. The factor 5/3 is independent of N, and
Te, and is likely to be due to electron-electron collisions not included in Spitzer's ve.

Monte Carlo results show that Ar for electrons is a non-Gaussian random variable for
1 and Gordeyev integrals obtained from Brownian motion versus Monte Carlo
calculations do not match except in a — 0 limit.

T ~ Vg

Modified Brownian model of Woodman [2004] shows a reasonable agreement with the
simulations at 50 MHz (3 m radar) except for a minor offset, but it requires adjustments at
higher probing frequencies such as 500 MHz (30 cm radar).

Electron-collision effects are less pronounced for a 30 c¢m radar than for 3 m radar (as
expected), but still the effects cannot be neglected at small .
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At very very small aspect angles, 1 and 5 milli-degrees (T ; = 1000 K, O™):

ISR Spectrum - xB =3m, a=0.001°
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Power Density

At perp. to B (collisionless is a d here) and at 0.5° off-perp.:

ISR Spectrum - }»B =3m, a=0°
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Conclusions

Sulzer and Gonzalez [1999] simulations of electron-Coulomb collisions and their
impacts on ISR spectra at small aspect angles were — for all practical purposes
— confirmed by our simulations, which were conducted with independent
software and algorithms using a 3-D setting (instead of 1-D).

The extension of the simulations to o« = 0 has shown that Woodman
[2004] semi-empirical model works well at 50 MHz except for the need for a
minor correction of a minor error inherited from Sulzer and Gonzalez [1999]
simulations.

The extension of simulations from 50 MHz to 500 MHz have provided the
information to generalize the semi-empirical model for use over a range of
practical ISR frequencies.

We have now a working small-ac spectral theory to subject it to further
experimental tests and attempt inversions of measured ISR spectra at small-«
for densities and temperatures based on the new model.

We are optimistic that T, and T} can be estimated by using both spectral
and cross-spectral data — north-south baseline cross-spectra are sensitive to
T./T; dependent “aspect sensitivity” of incoherent scattered signal.
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