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Incoherent-scatter spectral models for modes propagating
perpendicular to Earth’s magnetic field B will be described.

Outline:

• Motivation: Why “perp. to B ISR” is important?
• ISR tutorial: to establish a setting needed for the discussion

of perp. to B issues.
• Recent results on the effect of electron Coulomb collisions

(1996-2004).
• 3-D modeling of collision effects — also in Milla and Kudeki

[2006] poster.
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Why “perp. to B ISR theory” is important?

Because:

• “Perp. to B” is the natural look direction for equatorial
ISR (JRO, ALTAIR, AMISR(?)) vertical drift measurements.

• ISR spectrum is very different at small aspect angles α,
close to perp to B — familiar double-humped shape
disappears as “overspread” scatter turns into “underspread”
in α → 0 limit.

• Different spectral shapes correspond to different micro-physics
dominant at different aspect angles.

• ISR theory had to be revised a number of times (over the last
40 years) in small-α regime to match the increasingly refined
new observations coming from JRO — we are currently going
through another round of revisions.

• Revisions are related to difficult issues in plasma physics
concerning collisions and thus the results could have “broader
impact”.
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• ISR spectrum narrows down to “almost a
delta” as α → 0, which is wonderful
for high-precision drift measurements using
“periodogram” techniques.

• A better understanding of the ISR spectrum
for small-α opens up the possibility of
density and temperature measurements that
accompany drift observations — practical
impact.

• Perp. to B direction is also the natural
direction to observe field-aligned plasma
instabilities — e.g., spread-F, 150-km echoes,
electrojet in the equatorial ionosphere.

• Joint studies of the instabilities and
surrounding ionosphere can be conducted by
using perp. to B radar beams — another
practical reason.

Now the tutorial ...

using differential phase method [Feng et al., 2004]

such observations have lead to significant progress
in explaining bottom-type spread-F [Kudeki and
Bhattacharyya, 1999] and shear-driven seeding of spread-F
bubbles [Hysell and Kudeki , 2004]
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First degree of α:
From Milla and Kudeki poster [2006] showing the results of brand new collisional ISR

spectrum calculations using a 3-D random walk code — just in case I get stuck in the tutorial
and run out of time:

Re{Je(ω)} at 50 MHz: Re{Je(ω)} at 500 MHz:
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Unless electron Coulomb collisions are included in the theory, the narrowing of the spectrum
in α → 0 limit is not properly modeled. — Now the tutorial, really ...
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Thomson scatter from a single electron

Oscillating free electrons radiate like Hertzian dipoles:

Ese
jωot = −

re

r
Eie

j(ωot−2kor)

is the electric field “backscattered” or “radiated back” from
a single electron at a distance r in response to an incident
field (real parts are implied in both expressions)

Eie
j(ωot−kor)

of frequency ωo and wavenumber ko = ωo
c = 2π

λo
;

re ≡
e2

4πεomc2
≈ 2.818× 10−15 m

is a fundamental length scale known as classical electron
radius.

r

Ei ej(ωot−kor)

e−

Es ejωot

“j ≡ −i”

4



Backscatter from a small volume of electrons

Backscattered field envelope from a small volume ∆V centered
at r = rr̂ containing P free electrons at an average-density of
No = P/∆V is the simple sum

Es = −
No∆VX

p=1

re

rp
Eip e−j2korp → −

re

r
Ei

No∆VX

p=1

ejk·rp.

The paraxial limit on the right is valid for r > 4∆V 2/3/λo

(effectively the far-field condition for an antenna of size ∆V 1/3

and wavelength λo/2) while

k ≡ −2kor̂,

known as Bragg vector, is the scattered minus incident wavevector
relevant to scattering volume ∆V .

r

Es ejωot

rp

∆V

r̂

k
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Particle trajectories rp(t) and density-waves n(k, t):

The scattered field varies with time as

Es(t) = −
re

r
Ei

No∆VX

p=1

ejk·rp(t) = −
re

r
Ei n(k, t)

where

n(k, t) ≡
No∆VX

p=1

ejk·rp(t)

is the spatial Fourier transform
R

dr n(r, t) ejk·r of

n(r, t) =
No∆VX

p=1

δ(r− rp(t)),

a number density function defined for electrons with
trajectories rp(t).

Note: Normalized variance

1

∆V
〈|n(k, t)|2〉

in ∆V → ∞ limit (meaning
∆V 1/3 > a few correlation scales) is
the spatial power spectrum of density
fluctuations due to random trajectories
rp(t).

Density space-time spectrum is
(likewise) the Fourier transform of
normalized auto-correlation (ACF)

1

∆V
〈n∗(k, t)n(k, t + τ)〉

of n(k, t) over time lag τ (see next
page).
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“Soft-target” power spectra

Es(t) = −
re

r
Ei n(k, t) ⇒ 〈|Es(ω)|2〉 =

r2
e

r2
|Ei|2〈|n(k, ω)|2〉∆V

in terms of electron-density space-time spectrum

〈|n(k, ω)|2〉 ≡
Z

dτe−jωτ 1

∆V
〈
No∆VX

p=1

e−jk·rp(t)
No∆VX

p=1

ejk·rp(t+τ)〉

Also the total power collected by a radar antenna with an
effective aperture Ae — adding the spectrum over all frequencies
ω/2π and subvolumes ∆V — is (open-bandwidth case)

Pr =

Z
dω

2π

Z
dV

|Ei|2/2ηo

r2
Aer2

e〈|n(k, ω)|2〉 —Radar eqn.

Above and elsewhere, angular brackets 〈 and 〉 around a random variable imply
an expected value or ensemble average.

r

∆V

Ae

〈|n(k, ω)|2〉 is the F.T. over time lag
τ of the normalized ACF

1

∆V
〈n∗(k, t)n(k, t + τ)〉.
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“Soft-target” power spectra

Es(t) = −
re

r
Ei n(k, t) ⇒ 〈|Es(ω)|2〉 =

r2
e

r2
|Ei|2〈|n(k, ω)|2〉∆V

in terms of electron-density space-time spectrum

〈|n(k, ω)|2〉 =

Z
dτe−jωτ 1

∆V
〈
No∆VX

p=1

e−jk·rp(t)
No∆VX

p=1

ejk·rp(t+τ)〉

= No

Z
dτe−jωτ〈ejk·∆r〉 ≡ 〈|nte(k, ω)|2〉,

assuming that electrons follow random trajectories with
independent displacements ∆r ≡ r(t + τ) − r(t). But the
assumption is not valid, and its direct consequence (in thermal
equilibrium)

〈|Es(ω)|2〉 ∝ 〈|nte(k, ω)|2〉 ∝
Z

dτe−jωτ〈ejk·vτ〉 ∝ e
− ω2

2k2C2
e ,

a Gaussian radar spectrum of a width ∝ electron thermal speed
Ce — original expectation of Gordon [1958] — is not observed.
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because of “collective effects ” due
to polarization fields (spectra for 41
MHz observations of Bowles, 1958).
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Including the “collective effects”

If there were no collective effects

• spectrum of electron and ion density fluctuations in the plasma would be

〈|nte,i(k, ω)|2〉 ≡ No

Z ∞

−∞
dτe−jωτ〈ejk·∆re,i〉,

with
– No average plasma density
– ∆re,i ≡ re,i(t + τ)− re,i(t) independent particle displacements

• of course there would also be random current densities “ ω
ke(nti − nte)” and

space-charge fluctuations “e(nti−nte)’’ satisfying the plane-wave continuity
equation across k-ω space

Collective effects come into play because space-charge ∝ nti − nte requires (via
Poisson’s equation) a longitudinal electric field E (parallel to k) which, in turn,
drives additional currents σeE and σiE to force the total current, including the
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displacement current jωεoE, to vanish; thus

(jωεo + σe + σi)E +
ω

k
e(nti − nte) = 0

so that Ampere’s law applied to longitudinal (space-charge) waves (influenced by
collective effects) is satisfied.

One of the solutions of this “KCL equation” — obtained with the aid of an
equivalent circuit model shown below — is the electron-density wave amplitude

n(k, ω) =
(jωεo + σi)nte(k, ω)

jωεo + σe + σi
+

σenti(k, ω)

jωεo + σe + σi
,

a weighted sum that can be interpreted in terms
of “shielded” versions of thermally driven densities
nte and nti — shielding reduces the overall
space-charge by a factor |1 + χe + χi| , 1,
where χe,i ≡ σe,i/jωεo are electron- and ion-
susceptibilities.

−ω

k
e nte

jωεo
σi σe

ω

k
e nti

E

−ω

k
e n

ω

k
e ni
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We have expressed the actual electron density fluctuation in the plasma in
terms of independent random variables nte and nti; thus, upon squaring and
averaging the expression we find that electron density spectrum

〈|n(k, ω)|2〉 =
|jωεo + σi|2〈|nte(k, ω)|2〉

|jωεo + σe + σi|2
+

|σe|2〈|nti(k, ω)|2〉
|jωεo + σe + σi|2

,

a sum of electron- and ion-lines, proportional to 〈|nte,i(k, ω)|2〉, respectively.
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41 MHz, T=1000 K, atomic oxygen

 

 

ion line
electron line

The spectrum formula above is a very general result which is valid with
any type of velocity distribution (i.e., Maxwellian or not). It can be modified in
a straightforward way to treat the multi-ion case. It is also valid in magnetized plasmas in
electrostatic approximation — i.e., for nearly longitudinal modes with phase speeds ω/k - c

— with σe,i = σe,i(k, ω) denoting the longitudinal component of particle conductivities.
However, to use it we need accurate knowledge of all σe,i(k, ω).

Fortunately, there are some wonderful links between conductivities σe,i(k, ω)
and ejk·∆r-statistics of particles that we can use.
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Links

First, according to generalized Nyquist noise theorem [e.g., Callen and Greene,
1952], mean-squared particle current due to random thermal motions is (in the
particle frame)

ω2

k2
e2〈|nte,i(k, ω)|2〉 = 2KTe,iRe{σe,i(k, ω)}

per unit bandwidth, per species, so long as each species is in thermal equilibrium
(i.e., have a Maxwellian velocity distribution) at a temperature1 Te,i.

−ω

k
e nte

jωεo
σi σe

ω

k
e nti

E

−ω

k
e n

ω

k
e ni

1When Te = Ti = T , i.e., in case of full thermal equilibrium, ω2

k2 e2〈|n(k, ω)|2〉 = 2KTRe{σt(k, ω)}
with σt representing the Thevenin admittance of the equivalent circuit looking into the opened electron branch.
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Second, as a consequence of causality, imaginary part Im{σe,i(k, ω)} of
conductivity σe,i(k, ω) is the Hilbert transform of Re{σe,i(k, ω)}, a general
rule known as Kramers-Kronig relation which applies to all Fourier transforms of
causal signals that vanish for t < 0.

The upshot is, in a plasma in thermal equilibrium, all parameters needed to
compute the electron density spectrum can be deduced from

〈ejk·∆re,i〉,

characteristic functions of particle displacements ∆re,i in the absence of collective
effects. We will call them “single particle ACF’s” in the following discussions.
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What we have seen so far was distilled from a number
of different approaches to incoherent scatter problem
worked out during the 1960’s:

• Farley and co-writers derive σe,i(k, ω) from plasma kinetic theory (Vlasov equation) and
then use the Nyquist formula to obtain 〈|nte,i(k, ω)|2〉.

• Fejer does both calculations independently, not using (but effectively re-deriving) the Nyquist
formula.

• Woodman takes yet another approach, including steps involved in the proof of the
generalization of Nyquist theorem by Callen and Greene [1952], but not using Nyquist’s
formula explicitly.

• Hagfors and collaborators first calculate 〈|nte,i(k, ω)|2〉 from 〈ejk·∆re,i〉 and then
“dress” the particles making up nte,i(k, ω) with σe,i(k, ω) dependent “shields” to obtain
the expression for electron density spectrum — Nyquist formula is effectively re-derived.

These pioneers have handed us (the current generation
of ISR users) a ...
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“Standard Model”

Js(ω) ≡
Z ∞

0
dτ e−jωτ〈ejk·∆rs〉 — Gordeyev integral, a 1-sided F.T.

for species s (e or i for the single-ion case), and use

〈|nts(k, ω)|2〉
No

= 2Re{Js(ωs)} and
σs(k, ω)

jωεo
=

1− jωsJs(ωs)

k2h2
s

,

where ωs ≡ ω − k · Vs is Doppler-shifted frequency in the radar frame due to
mean velocity Vs of the species and hs =

p
εoKTs/Noe2 is the corresponding

Debye length. In terms of above definitions, electron density spectrum of a stable
Maxwellian plasma is

〈|n(k, ω)|2〉 =
|jωεo + σi|2〈|nte(k, ω)|2〉

|jωεo + σe + σi|2
+

|σe|2〈|nti(k, ω)|2〉
|jωεo + σe + σi|2

.

The model takes care of macrophysics of incoherent scatter — microphysics
details need to be addressed within single particle ACF’s 〈ejk·∆rs〉.
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Single particle ACFs 〈ejk·∆r〉 ≡ 〈ejk·(r(t+τ)−r(t))〉
are the centerpiece of Standard Model — their Fourier transforms or Gordeyev integrals (obtained
numerically in most cases) provide us with the conductivities and spectra of all species in a plasma
(in thermal equilibrium).

∆r = vτ

r(t) r(t + τ )

!4 !2 0 2 4
0

1

2

3

4

5

6
x 10

!4

!/2"  (KHz)

S
p
e
c
tr

u
m

/N
o

and “Ohmic” σ’s
because of Landau
damping (inherent to
Std. Model).

In general, if ∆r, component of ∆r along k, is a Gaussian random variable, then

〈ejk·∆r〉 = e−
1
2k2〈∆r2〉.

Example: In a non-magnetized plasma particles move along straight line trajectories (in between
collisions) with velocities v and thus

∆r = vτ ;

hence
∆r = vτ ⇒ 〈∆r2〉 = 〈v2〉τ2 = C2τ2,

for a Maxwellian (required by Standard Model ) distributed v along k with an rms speed
〈v2〉1/2 =

p
KT/m ≡ C. Thus, in a non-magnetized plasma

〈ejk·∆r〉 = e−
1
2k2C2τ2

so long as “collision frequency” ν is small compared to kC — i.e., if an average particle moves a
distance of many wavelengths 2π

k in between collisions.
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Collisional D-region
spectra from JRO:

Chau and Kudeki [2006]

In a collisional plasma 〈∆r2〉 = C2τ2, special for free-streaming particles, stays
valid until “first collisions” take place at τ ∼ ν−1. For ντ , 1, collisional
random walk process leads to 〈∆r2〉 ∝ τ instead of τ2, and more specifically,
over all τ ,

〈∆r2〉 =
2C2

ν2
(ντ−1+e−ντ) ⇒ ACF =

8
>><

>>:

e−
1
2k2C2τ2

, ν - kC

e−
k2C2

ν τ , ν , kC

if a Brownian-motion model is adopted for collisions. Using the high-collision
approximation above (which is not sensitive to the choice collision model, e.g.,
Brownian, BGK, etc.) a Lorentzian shaped electron density spectrum pertinent to
D-region altitudes can be easily obtained (mainly the “ion-line”):

〈|n(k, ω)|2〉
No

≈
2k2Di

ω2 + (2k2Di)2

in kh - 1 limit (wavelength larger than Debye length) with Di ≡ C2
i /νi =

KTi/miνi, ion diffusion coefficient.
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However, a complete D-region model should require a multi-ion formulation including negative
ions [e.g., Mathews, 1978].

Generalizations:

Using the above result, it is easy to show that

〈|n(k)|2〉 ≡
Z ∞

−∞

dω

2π
〈|n(k, ω)|2〉 =

No

2
,

which is in fact true in general — i.e., for all types of plasmas
with or without collisions and/or DC magnetic field — so long
as Te = Ti and kh - 1.

This result in turn leads to a well-known volumetric radar cross-
section formula for incoherent backscatter (valid under the same
conditions):

4πr2
e〈|n(k)|2〉 = 2πr2

eNo.

Only for kh , 1 we obtain 〈|n(k)|2〉 = No.
Notice aspect angle dependent errors
from 200 to 300 km where Te > Ti.
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Plasma with a DC magnetic Bo

〈ejk·∆r〉 = 〈ej(k‖∆r+k⊥∆p)〉 = 〈ejk‖∆r × ejk⊥∆p〉,

where ∆r and ∆p are particle displacements along and perp to Bo on k-Bo

plane.
Assuming independent Gaussian random variables ∆r and ∆p, we can

write

〈ejk·∆r〉 = e
−1

2k2
‖〈∆r2〉 × e−

1
2k2
⊥〈∆p2〉

in analogy with non-magnetized case. The assumptions are valid in the absence
of collisions, in which case

〈∆r2〉 = C2τ2 and 〈∆p2〉 =
4C2

Ω2
sin2(Ωτ/2),

where Ω is the gyro-frequency and periodic 〈∆p2〉 is fairly easy to confirm in
terms of circular orbits with periods 2π/Ω and mean radii

√
2C/Ω.

α
Bo

k

k‖

k⊥
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Thus,

〈ejk·∆r〉 = e
−1

2k2
‖C2τ2

× e
−

2k2
⊥C2

Ω2 sin2
(Ωτ/2)

Spectrum examples:

Large α : the usual ion-line Small α: “electron-line” with a reduced width

Note, the ACF above becomes periodic and the associated spectra are singular (with delta
functions) in k‖ → 0 limit. Singularities are not observed in practice and it was recognized early
on to include Coulomb collisions — electrostatic interactions of neraby particles within a Debye
length not covered by collective effects — in the theory [Farley, 1964]. Examples above were
obtained with collisional equations of Woodman [1967] that includes ion-ion collisions.
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After Sept 94 MISETA 
experiments we 
started applying the 
same spectral 
analysis to SpF and 
ISR data...   
*********************
**The new method 
provided much 
better precision and 
resolution than the 
ACF methods used in 
the past...********   
But, our efforts to fit 
Te gave 
unrealistically low 
results, at least by a 
factor of 2

And then there was the 
puzzle of Te<Ti being 
estimated at 2 deg off-
perp --- since the 60's, 
in fact --- with major 
efforts put by Pingree 
[1990] to understand 
the reason



A collisional/magnetized model, consistent with independent and Gaussian ∆r and
∆p assumptions, is obtained with

〈∆r2〉 =
2C2

ν2
(ντ − 1 + e−ντ),

〈∆p2〉 =
2C2

ν2 + Ω2
(cos(2γ) + ντ − e−ντ cos(Ωτ − 2γ)),

where γ ≡ tan−1 ν/Ω — first derived by Woodman [1967] using what is
effectively a Brownian motion model in the presence of Bo. In perp to Bo limit:

〈ejk·∆r〉 → e
− k2C2

Ω2+ν2(cos(2γ)+ντ−e−ντ cos(Ωτ−2γ))

is non-periodic, ion resonances go-away, electron-line is broadened:

Effective (velocity averaged) Coulomb
collision frequencies for a singly ionized
plasma (after Spitzer , 1958):

νe =
4
√

2πNie
4 ln(12πNeh3

e)

3(4πεo)2
q

meT 3
e

∝
Ni

T
3/2
e

,

ν(v) =
4πNie

4 ln Λ

(4πεo)2m2
ev3

, νi =

s
meT 3

e

2miT
3
i

νe.
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While electron collisions cause spectral broadening at α = 0 (by enabling cross-field diffusion), their effect turns out to be in
the opposite direction at small but non-zero α because of parallel-dynamics:

e
−

k2
‖C2

ν2 (ντ−1+e−ντ ) →

8
>>><

>>>:

∼ e
−1

2k2
‖C2τ2

, ν - k‖C — free streaming

∼ e−
k2
‖C2

ν τ , ν , k‖C — diffusion limit

• first line above, valid at larger α or k‖, accounts for the usual narrowing
of electron-line with decreasing α in the absence of collisions,

• the second line, valid for smaller α, predicts additional narrowing due
to collisions, just like in D-region narrowing of ion-line with increasing ν

— basically, collisions impede motion along Bo, lengthening correlation
times and narrowing the corresponding spectra. However, the narrowing
effect is still quite weak at α ≈ 2◦ when the Brownian collision model is
used.

from Aponte et al. [2001], illustrating
Te/Ti < 1.

Sulzer and Gonzalez [1999] conjectured that a proper treatment of electron Coulomb collisions should do the job — i.e.,
eliminate non-physical results of Te < Ti inferred from JRO F-region data taken at α ≈ 2◦ [e.g., Pingree, 1990] — and
proved their point by simulating the Coulomb collision process for electrons.
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Sulzer and Gonzalez [1999] & Woodman [2004]:

The Brownian motion model is based on an assumption of constant collision/diffusion
coefficients in a governing “Langevin equation” — a 1st order stochasic differential equation
governing electron velocity v(t) [e.g., Gillespie, 1996] — whereas, “in reality”, the coefficients
for Coulomb collisions are v(t) dependent. Thus in reality the equation for v(t) is non-linear,
causing the statistics of v(t) and its time integral ∆r to become non-Gaussian. To address this
difficulty and explore its implications, Sulzer and Gonzalez [1999] computed the electron ACF
〈ejk·∆r〉 numerically using a Monte Carlo approach:

The positions and velocities r(t) and v(t) of simulated electron
motions were updated at ∆t intervals with increments

∆r = v∆t

and
∆v = K∆t + δv,

where δv is a Gaussian random variable with v and ∆t dependent
moments — derived specifically for Coulomb collisions by Rosenbluth
et al. [1957] and others dating back to Chandrasekhar [1942] —
and K is a deterministic external force per unit mass.
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The update equations above constitute jointly the Langevin equation of a multivariate
Markov process (non-linear and non-Gaussian) consisting of the components of r(t) and v(t).
Estimates of ACF 〈ejk·∆r〉 were formed as the inverse Fourier transform of power spectra of
synthesized time-series ejk·r(t). In spectrum calculations standard FFT methods were employed,
just like in radar data analysis. A library of Gordeyev integrals derived from simulated 〈ejk·∆r〉
is used ultimately for density spectrum calculations.
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• Simulated versus collisionless spectra show considerable differences at small
aspect angles α, enough to correct the Te/Ti problem at α ≈ 2◦

measurements.
• Woodman [2004] re-examined the Brownian model and — agreeing with the

main findings of Sulzer and Gonzalez — developed an empirical collision-
frequency model νe = νe(α) that gives the best fit of Brownian spectra to
Sulzer and Gonzalez [1999] simulation results.
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• Woodman model νe = νe(α) effectively extrapolates the Sulzer and Gonzalez
simulation results from α = 0.25◦ to 0o and is convenient to use in place of
the Sulzer and Gonzalez Gordeyev library.

with sin θc = λ
. = λνe

Ce
.
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Highlights of Milla and Kudeki [2006] poster:

• Studies described in Milla and Kudeki [2006] aim to:
– explore the goodness of Woodman’s νe = νe(α) model in α → 0 limit and

at radar wavelengths other than 3 m for which the model was developed,
– improve the model if needed

• by using the same methodology as Sulzer and Gonzalez [1999], except for:
– include finite gyro-radius effects by doing 3-D computations of particle orbits

instead of 1-D (parallel Bo) computations
– extend the computations all the way to α = 0.

• Initial results:
– agree with Sulzer and Gonzalez [1999] results except for a minor offset

(~10% near spectral peak as α → 0.25◦) the source of which was
identified in Sulzer’s code — a typo that replaces some

√
2 by

p
π/2.

– Woodman’s νe = νe(α) model inherits the offset just described but
otherwise agrees with the simulated spectrum variations as α → 0.

– Woodman’s νe = νe(α) model needs “retuning” at other radar wavelengths
(that is, other than at 50 MHz)
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Last 1000 millidegrees of α:

Re{Je(ω)} at 50 MHz: Re{Je(ω)} at 500 MHz:
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Note how 〈|nte(k, ω)|2〉 ∝ Re{Je(ω)} narrows down more rapidly at 50 MHz than at
500 MHz as approaches α = 0.

A “testable” prediction using a pair of ISR’s — VHF and UHF — near the magnetic equator:
ALTAIR or, alternatively, JRO/AMISR combo.
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Last 500 millidegrees of α:

Re{Je(ω)} at 50 MHz: Re{Je(ω)} at 500 MHz:
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Note how 〈|nte(k, ω)|2〉 ∝ Re{Je(ω)} narrows down more rapidly at 50 MHz than at
500 MHz as approaches α = 0.

A “testable” prediction using a pair of ISR’s — VHF and UHF — near the magnetic equator:
ALTAIR or, alternatively, JRO/AMISR combo.
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More detailed comparisons show that:
1. Brownian motion based ion-Gordeyev integrals match ion Monte Carlo results very well using

for νi the effective Coulomb collision frequency (due to Spitzer) for ions given earlier. This
finding is consistent with the success of Woodman [1967] theory in showing the absence of
ion gyro-resonance effects.

2. Monte Carlo results for electron displacements ∆p transverse to Bo exhibit a Gaussian ∆p
with a variance 〈∆p2〉 matching well the Brownian motion model using 5

3νe for ν, where
νe is the Spitzer collision frequency for electrons. The factor 5/3 is independent of Ne and
Te, and is likely to be due to electron-electron collisions not included in Spitzer’s νe.

3. Monte Carlo results show that ∆r for electrons is a non-Gaussian random variable for
τ ∼ ν−1

e and Gordeyev integrals obtained from Brownian motion versus Monte Carlo
calculations do not match except in α → 0 limit.

4. Modified Brownian model of Woodman [2004] shows a reasonable agreement with the
simulations at 50 MHz (3 m radar) except for a minor offset, but it requires adjustments at
higher probing frequencies such as 500 MHz (30 cm radar).

5. Electron-collision effects are less pronounced for a 30 cm radar than for 3 m radar (as
expected), but still the effects cannot be neglected at small α.
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At very very small aspect angles, 1 and 5 milli-degrees (Te,i = 1000 K, O+):
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At perp. to B (collisionless is a δ here) and at 0.5◦ off-perp.:
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Conclusions

• Sulzer and Gonzalez [1999] simulations of electron-Coulomb collisions and their
impacts on ISR spectra at small aspect angles were — for all practical purposes
— confirmed by our simulations, which were conducted with independent
software and algorithms using a 3-D setting (instead of 1-D).

• The extension of the simulations to α = 0 has shown that Woodman
[2004] semi-empirical model works well at 50 MHz except for the need for a
minor correction of a minor error inherited from Sulzer and Gonzalez [1999]
simulations.

• The extension of simulations from 50 MHz to 500 MHz have provided the
information to generalize the semi-empirical model for use over a range of
practical ISR frequencies.

• We have now a working small-α spectral theory to subject it to further
experimental tests and attempt inversions of measured ISR spectra at small-α
for densities and temperatures based on the new model.

• We are optimistic that Te and Ti can be estimated by using both spectral
and cross-spectral data — north-south baseline cross-spectra are sensitive to
Te/Ti dependent “aspect sensitivity” of incoherent scattered signal.
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