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Plasmasphere Interface
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RINg current Is the source of neat ana
particle fluxes in regions of overlap with the
geocorona & plasmasphere

e What processes
produce heat fluxes and
create ion precipitation
In the inner
magnetosphere

 What are the impacts to
the underlying
lonosphere/
atmosphere?

 What are the major
unknowns? New

science questions?

"Burch et al., GRL, 2001



tails of the Coupling Processes

@ | - Heat Flux: Coulomb collisions between ring current ions
and plasmaspheric electrons

_________________
Particle
Flux

e lon Precipitation:

— Anisotropic (in PA) ring current ions drive EMIC wave
growth. EMIC waves scatter resonant ions into the loss
cone

— Stretched magnetic fields scatter ions with gyroradius
larger than field-line curvature into the loss cone

* Neutral Atom Precipitation: Ring current ions charge
exchange with the geocorona to produce ENA, which sprays
out in all directions. Some fraction encounters the
atmosphere.




Coulomb collisions result iIn minor loss to
the ring current (<10%) but major
lonospheric effects

Handbook on Geophysics & Space
Environment, 1985
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lons enter the loss cone through
Sl | nteractions with plasma waves or
B scattering in stretched magnetic fields

ring current

Charge exchange
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Basic Facts About Wave-

Particle Interactlons

Kozyraet al.,
Rev Geophys,

| Cyclotron Resonance: When both the sense of the
rotation and rotation frequency match for both wave
and particle, the particle will essentially see a constant
wave field. The particle can exchange energy with the
wave E field or be deflected in pitch angle by the wave
B field.

 Damping: particle gain energy from waves.
« Growth: waves gain energy from particles

Landau Damping: EM waves acquire a parallel E field
Partice ——— when the wave vector makes a finite angle with the dc
Flux magnetic field. Particles traveling slightly slower

lon Cyclotron Waves (faster) than the wave will be accelerated (decelerated).

SAR arc theory: Ring current ions amplify ICW waves & scatter into loss cone. lon
cyclotron waves damped by plasmaspheric electrons which gain parallel velocity. Heat
(low energy electron) flux into ionosphere powers SAR arcs [Cornwall et al., 1971].
Problem: lon cyclotron wave not observed with sufficient frequency, spatial extent, or
duration. Still open question.




E/CCE Occurrence rate o
cyclotron waves peaks near 10% at L

values > 6 In prenoon to dusk sector.

AMPTE/CCE Pc 1: Scatter Distribution AMPTE/CCE: Pc 1 Percent Occurrence Rate
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Anderson et al., Adv. Space Res., 1996

Fig. 1. Scatter plot (left) and normalized occurrence rate (right) of EMIC wave events
observed by AMPTE/CCE in an L-MLT projection /25/.



| CRRES statistics for ion cyclotron waves
’ In agreement with AMPTE/CCE - mostly
outside plasmapause

Normalized
He+
cyclotron
frequency

1.0
Levent-Lpp

Waves in frequency band above He+ cyclotron frequency only occur outside
the plasmasphere. [Fraser and Nguyen, JASTP, 2001]




| CRRES statistics for ion cyclotron waves
’ In agreement with AMPTE/CCE -
highest occurrence in dusk bulge region
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Highest occurrence when thermal density is ~10- 300 cm-2 [Fraser
and Nguyen, JASTP, 2001]




DE-1 Occurrence rates in storm time

~2.3% at L = 3-4; Iin quiet time ~0.43%

occurrence
may be due
to spatial
and temporal
variability of
waves with
only one
spacecraft
sampling
them

| Peak wave
"\, spectral density

() =100

10 years of DE-
T | 1 data
OMLT

Erlandson & Ukhorskiy, JGR, 2001




lon scattering in stretched magnetic
flelds creates large-scale 1on
precipitation zones

August 12 , 1979 TIROS—N 23-24 h MLT

. Total Energy Flux
“ Protonu =20 keV

-~
_—"Kivelson &
Russell, 1995

When the ion gyroradius >
field line curvature, the
particle scatters in pitch
angle crossing the
equatorial plane.
|sotropizes distribution
[Sergeev et al., Planet.
Space Sci., 1983; 1 _
Anderson et al., JGR, | "% ¢.G.Lotitude . dea.
1997] Newell et al., JGR, 1998
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&l 0N scattering In stretched magnetic
Sl fields creates large-scale |
precipitation zones

regions with 6z > 0. (ll suffer net Ap ~

I . High-p adiabatic

Anderson et al., JGR, 1997
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Ml Basics of Charge
: change

H+, [}+

ring current ——
Charge exchange

H, O

Loss
cone
ons
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OF, H*

lonization
production

Denser

atmosphere Equator

Adapted from Bauske et a., Ann Geophysicae, 15, 300, 1997.
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gﬁ Charge exchange lifetimes vary with species

Normalized charge exchange lifetime
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Ebihara and Ejiri, Space Sci Rev, 105, 377-452, 2002.




Relative Importance to Ring

Current Energetics

TABLE IV

Loss rates of the total energy content to that
calculated with no loss process for different
loss processes for different ionic species at an
elapsed time of 48 h from the beginning of the
calculation. The loss rate of 100% corresponds
to that the total energy content is wholly lost

Loss process

H+ HetO+
(%) (%) (%)

No loss

Charge exchange
Coulomb drag
Drift loss cone
Strong diffusion

0.0 0.0 0.0%
65 38 5l
6.4 9.0 6.8
1.6 16 1.6
82 77 69

Ebihara and Ejiri, Space Sci Rev, 105, 377-452, 2002.
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Atmospheric Effects of All
Precipitating Particles are Not

the Same

Monoenergetic Proton Flux
Unidirectional

monoenergetic
electron flux
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Rees, Physics & Chemistry of the Upper Atmosphere, Cambridge Univ. Press, 1989

Electrons penetrate deeper than protons of the same energy.



Peak ionization from protons

occurs deeper In atmosphere
than oxygen of the same energy

_ _ Peak Altitude of lonization as a
Monoenergetic Incident Protons Function of Incident O* Energy

Rees, Physics & Chemistry of the

Upper Atmosphere, Cambridge Ishimoto et al., JGR, 8619, 1992
Univ. Press, 1989




All lon or Neutral Atom
Precipitation Quickly Creates

lon/Neutral Equilibrium Beam

Primary energetic

particle Primary energetic oxygen particle, O
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Backsplash Flux of
lons/Neutrals Is Produced

Trajectories of 1000 |
2-keV protons in 900
Monte Carlo model. aool

Trajectories with 700}
upward velocity |
component produce
escape flux which is
up to 16% of
Incident <10 keV %
flux and 10% for a 300877
iIncident 100 keV
flux for 30 deg field
tilt 1001

6001

Height (km)

0 i i i i
[Synnes et al., 0 200 400 600 800 1000
JASTP, 1998] S Distance (km) N



Percent of escaping ENA

H backsplash is negligible
compared to O Backsplash

Total Escape Number

Synnes et al., JASTP, 60, 1695-1705, 1998
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Main dispersion of proton beam takes
place between 250 and 450 km. Below
120 km, beam Is attenuated dramatically

Almude 450 km Alhtude 350 km Altitude: 250 km Altltude 120 km

O V

Downward H* Fluxes
(em~2s™ s )

Downward H Fluxes
(em~2s™"sr™ )

Monoenerietc 10 ke otons "
500 km ra‘l

Fang et al., JGR, 2004

Primary lonization Rate
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Large part of precipitating O*/O
Ml cnergy heats the neutral
M atmosphere

[O] escape

sec [€e]
production

[N,] ionization

[N,] heating

[O] heating

Ishimoto et al.,
JGR, 8619, 1992




Largest part of precipitating H*/H
energy Ilonizes & creates secondary
electrons

Total
lonization
- Secondary electrons
Excitation
- Others
Basu et al. [2001]

Atmospheric heating

10° 10° 10*
Energy Deposition Rate (eV cm™s™")

Fang et al., JGR, 2004




™ latitudes

Simulation of
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Factor of 5-10 Enhancement in Ne for a
a3 Vajor Magnetic Storm at Low Latitudes

Simulation of February 9, 1986 event
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Global View of lonization Contribution Using
3-hr NOAA Proton Plots

NOAA/POES data Model results
30-240 keV proton energy flux lonization peak intensity

Peak Intensity of Tc:utul lonization Rote {cm™3 s~

April 17, 2002 12 UT, Northern Hemisphere

30—-240 keV Proton Enal? Flux (ke¥ cm=2 s~')
April 17, 2002 12 UT f{wrthe n Her'n isphere

,l Fang
et al.,

2004
model

solar proton:




New Information on the
subauroral and equatorial effects

Midlatitude/Equatorial lon Auroras
®="| _ Detached Proton Arcs
7= o — Mid-to-Low latitude ENA/lon Auroras
< Visible SAR arcs

“Z% _ Subauroral Te peaks exceeding 10,000 K
— Morningside extension
— Soft ion source population




Detached Proton Arcs Indicate Wave-
Particle Interactions Are Occurring In
Regions that Map Subauroral

Detached arcs in
subauroral region reported
Moshupi et al., [2000],
Anger et al., [1978];
Vondrak et al., 1983].

Immel et al., [2002]:
protons are major source of

duskside detached arcs
from IMAGE

Zhang et al. [2002]:
dayside detached arcs
related to NW IMF &
pressure hits seen by
IMAGE.

Auroral images from TIMED/GUVI show double detached arcs, morning & afternoon,
1738 UT, 19 Aug 2003 [Zhang, et al., GRL, 2004]




First direct mapping of observed
detached arc to drainage plume which Is
a preferred location for wave activity

18 Jun 2001 15:50 UT

Mapped

detache

proton arc -
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ity ARGOS observed an O*/O aurora In the
88 SH during the July 2000 Superstorm

oo N 11 214.3 nm aurora o0 « Enhancement in O and O+ UV
| emissions during fast recovery
of July 2000 major storm.

* Not directly correlated with
emissions associated with
protons or with electron
excitation of N

[
2500 r
S
- [
|
[
=

* Above 300 km, equatorward of
the auroral oval, dusk sector,
L~4.

e Suggest ring current O ions
scatter into loss cone and
precipitate. Question: How
significant to ring current
recovery?

Stephan et a., JGR, 109, A09208,
doi:10.1029/2004JA 010557, 2004




IMAGE/EUV has global view of feature that Is

=9 . consistent with ARGOS observations of an O

aurora

S/C lot: 65,33
oxygeQ aurora

2000/1

ronge: 7.87 RE
S/C lot: 62,21

ronge: 7.74 RE
S/C lot: 64,27

2000/1
ronge: 7.93 RE
S/C lot: 61.21

2000/1

ronge: 7.81 RE
S/C lot: 63.24

S/C lot; 60,22

Stephan et al., JGR, 109, A09208, doi:10.1029/2004JA 010557, 2004

IMAGE/EUV
sensor has
residual
sensitivity to

- O+53.9nm

emission.

NH pass
shows bright
feature at ~
L=3-4
Timing in
gualitative
agreement
with ARGOS

observations
in SH
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|(_)n auroras at - Equatorial Anomolies (EA)
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SAR Arcs: Stable, long-lived, spectrally
pure at 6300 A, subauroral

LI'I['H'EHEITI EF [EH‘I IJE-i SAl ll'ﬂ.'-E UBSSE0 FILTER EI.I-I BI. ZN 124'93 .232 un

e Subvisual: Mean

1 Intensities 255 R
(solar max), 111 R
(solar min) [Slater &
4 Kleckner 1989]

70 b

* Dayside weaker than
| nightside Te peaks
[Kozyra et al., 1986]

Aurora

1¢ Soft electron
precipitation (~1 eV

| flowing Maxwellian)
[Gurgiolo et al., 1982]

SAR

20 r

190 EﬂD 210 EEﬂ 2313 EI-HJ EED EE-EI 2'4'0 Eﬂﬂ E'Elﬂ 300 310 320 33

Image : L. Frank and J. Craven from the Dynamics Explorer 1



'L"n m

 Interaction of Different | =%/ x®
* lons with the
Plasmasphere [c+,

Kozyra et al., Rev of Geophys.,
1997]

I solar wind *,

" 0.147
2% 0.124 H+ He+ O+ - Thermal
- = oo ackground: . .
-2 0. ﬂ:" 5 o Ne =1000 ecm-3 Note: A pOpu|atIOn
D g : Te = 5800 K of >10 keV H* ions
S £ 0.08" .
5 y overlapping the
g2 0.007 s V4 plasmasphere (as
220047 | seen in
Z2 002t superstorms) could
b . |
0.00 T — T — e R B S A aISO Supply
1 1 10 100 1000 significant
Energy (keV) magnetospheric
energy range of energy range of heat flux

superstorm soft ring current ions
lons



“ New Features of SAR Arcs during
.. extreme events

Duskside Dawnside

e Subauroral Te peak
reaches 10,000K SAR arc Te Peaks

 Dawnside peak can be
enhanced first and be
stronger than duskside
peak

» Strong soft (<10 keV) ion
precipitation

20:03:00 20:09:00 20:15:00 20:21:9Q0 20:37:00

IMSP. F13 — 20—Nov—2003 (Day 32¢)

*Coincident with Te
peak.

*Broader MLAT extent &
Intensity on dawnside

sAppropriate energy &

Intensity to produce
. DMSP spectrograms courtesy of Dave Hardy,
strong electron heating = oF Fred Rich, & Patrick Newel through the AFRL

In plasmasphere




¢~ SAR Arcs are driven into visible range
.. In superstorms

10 KR SAR-Arc, October 29, 1991 01:04 UT,
Millstone Hill/ Cedar Optical Facility.
10°F [Mendillo, Baumgardner, private comm, 2004]
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Strong Te Peaks 20-21 Nov 2003

Magnetic Latitude (deg)

Magnetic Latitude (deg)
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Strong Te Peaks 29-31 Oct 2003
SuperStOrm [Courtesy R. Heelis, UT Dallas]]
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Summary

Coulomb collisions, charge exchange, wave-particle interactions and
scattering in stretched magnetic fields drive Particle and heat fluxes into the
subauroral & low latitude ionosphere

Effects on the ionosphere/atomosphere vary with precipitating ion species.

New Observations are expanding our view of the impacts of subauroral heat
and particle fluxes and their variation with activity:

— Detached proton arcs give evidence that wave-particle interactions are occurring
In regions that map to the subauroral ionosphere

— First observations of the global extent of strong ion/atom auroras are being
made.

* Must have an impact on mid-low latitude ionospheric conductance, neutral heating,
etc. Needs further investigation

» Changes dynamically during the event
» Feedsinto electrodynamics of penetration and SAPs electric fields

— SAR arc morphology in MLT and strength are altered during superstorms.
Emissions are driven into the visible range associated with a new population of
precipitating soft ions. Question remains. How isthisrelated to great red
auroras during superstorms?
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