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This is NOT a talk on 
space weather effects
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What is energetics

• en•er•get•ics \-iks\ n pl but sing in constr 1 : a branch of 
mechanics that deals primarily with energy and its 
transformations  2 : the total energy relations and 
transformations of a system (as a chemical reaction or an 
ecological community) 〈~ of muscular contraction〉
(Webster’s New Collegiate Dictionary, 1981)

• energy sources and sinks
• need for quantitative understanding

• difficult as the numbers vary so much
• energy conversion

• EM to kinetic; kinetic to EM
• heating and acceleration

PHYSICS OF SPACE WEATHER
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Part 1: Global energy budget

• sources of space weather energy
• storms
• energy input to the magnetosphere
• energy dissipation
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The ultimate energy source

• total solar power: 3.86 x 1026 W
• 60 million 1-GW nuclear power units for everyone on Earth
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Solar power at 1 AU

• total solar irradiation
• solar ”constant”: 1366 ± 2 W m–2

• total irradiation on Earth: 1.7 x 1017 W
• solar EUV

• about 50% in Ly-α (121.6 nm): 6 mW m–2

• total irradiation on Earth ~ 1012 W
• this makes the ionosphere

• large variations (factor of 2 over the solar cycle)
• space weather in ionosphere and thermosphere

• solar wind
• KE flux 0.01 – 10 mW m–2

• Poynting flux ~ 0  – 1 mW m–2
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Sources of space weather on the Sun
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Coronal mass ejections (CME)

QuickTime™ and a
Microsoft Video 1 decompressor

are needed to see this picture.

Main drivers of large space storms
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A cloud is released from the Sun and 
reaches the Earth in  2–4 days
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Solar wind – magnetosphere interaction
(MHD simulation by P. Janhunen)

red: current out of the plane blue: current into the plane
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Strong electric currents are created in the 
Earth’s environment

QuickTime™ and a
Microsoft Video 1 decompressor

are needed to see this picture.
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Magnetic storm energy

Source:
• the Sun 
Sinks:
• polar ionospheres
• inner magnetosphere
• magnetotail
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Solar wind – magnetosphere interaction
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Input/output energy balance

• Energy comes from the solar wind
• assuming:  n = 5 cm-3,  V = 400 km/s,  B = 10 nT,  r = 15 RE 

• SW KE flux ~ 5 x 10–4 W/m2 ; power: 14000 GW
• SW Poynting flux ~ 3 x 10–5 W/m2 ; power:     800 GW

• But the actual input power cannot be measured 
directly

• Output is difficult but possible to estimate 
• the efficiency of dissipation channels varies
• numbers in the literature are very confusing

• e.g.,  Weiss et al.,1992, and references therein (ICS-1 
proceedings)

KE flux

Poynting flux
=

V ⋅ ρV 2

VB2 /µ 0

=
V2

VA
2 = MA

2
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Energy dissipation

• keeping up the magnetotail
• major factor (a few 100’s of GW)
• always there, but often “forgotten”

• dissipation in the ionosphere
• some 75% of total input
• Joule heating in the ionosphere (~50%)
• electron precipitation (~25%)

• the ring current
• role overestimated in old studies

• 1980’s: 90% of total
• recent: less than 20% 

• release of plasmoids
• minor effects (in terms of energy)

• relativistic electrons, AKR, ionospheric outflow
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Energy coupling functions

epsilon

sVBp

sVB

etc.

Dst

AL

Kp

PCI

Ap

aa

Solar 
wind

• different coupling functions  ↔ different time scales
• AL (minutes)
• <aa> (year)



17

The epsilon parameter of Akasofu

( ) 2
02

427 sin10 lBV θε = (SI units)

• widely used energy input estimate
• based on estimates of dissipation through ring current, Joule 

heating and auroral precipitation
• state of the art around 1980

• merits
+ units of power (W)
+ strong IMF Z-dependence
+ good correlation
– scaling factor l0 (≈ 7 RE ) is murky
– physical interpretation unclear

• often interpreted in terms of upstream Poynting flux 

• But does the energy really come from upstream Poynting flux?

S = E H = V B2 / µo =107 V B2 / 4π
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Upstream Poynting flux

• Note that only BT contributes to S toward the Earth!

• example:
• large BX, small BZ < 0, and BY = 0  

⇒ small Poynting flux toward Earth, weak IMF south,
BUT large epsilon parameter 
• large B2 and optimum clok angle

• Poynting flux is tricky
• where is EM energy located ?
• see, e.g., Feynman Lectures in Physics, Vol 2, Section 27 
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Bow shock, magnetosheath and Poynting flux 

Color code: |B|

Color code: |V|

Draped magnetic field

BS

MP

Magnetosheath flow model (Kallio and Koskinen, 2000)
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4 x 1010 W

2 x 1011 W

BIMF

front view

SW Msh

Bow shock transforms kinetic energy flux 
to Poynting flux (and heat)

0≠⋅∇ SBS:
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Poynting flux stream lines

MP
BS

S

S

B

Next question: What is the area through which the
Poynting flux “penetrates” through the magnetopause?
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Reconnecting magnetosphere

• Reconnection makes 
efficient energy transfer 
possible

• Energy is not transferred at 
X-line only

• cartoon level presentation
• qualitative (zero-order) 

picture of magnetospheric 
convection

Quantitative energy transfer description is still missing
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Basic physics

• reconnection
• opening of the magnetopause
• strong preference for southward IMF
• conversion of magnetic energy to kinetic (flow and heat)

• dynamo (or generator)
• conversion of kinetic energy to EM energy
• maintenance of currents in a dissipative system 

( )( ) BBVB 2∇η+××∇=
∂
∂
t ?

There is no quantitative reconnection-dynamo theory
for the solar wind – magnetosphere interaction!
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Dissipation in the auroral zone

Joule heating

Auroral precipitation
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Dissipation through Joule heating

• IMAGE magnetometer chain
• IL ”index”

• good proxy for AL in time 
sector 20–02 UT (local 
magnetic midnight at 2130 UT)

• proxy for the global heating

C ≈ 2–5 (see, Lu et al., 1998)
we use C = 3

• total JH dissipation 

• Note: Dissipation through 
precipitation is of the same order 
(~ 50% of JH)

∫= dtPWIL )J(

P(W) = C ⋅108 IL(nT)
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Example: June 23, 1997

• typical isolated 
substorm
• max IL ~300 nT

• input energy

• hemispheric Joule 
heating output: 
WIL ~ 25% of Wε

• total dissipation in 
ionosphere:
~ 75% of Wε
• JH: 50%
• precip: 25%

∫= dtW εε )J(
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Input (epsilon) vs. output (Joule heating)
energy correlations

• Eija Tanskanen et al., 
(submitted to JGR, 2001)

• time sector 20–02 UT
• quiet year (1997)
• active year (1999)

• isolated substorms
• best I/O correlation ≈ 0.7 

when both calculated for 
the expansion phase

• storm-time substorms
• for lage input the JH 

output does not follow the 
trend
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Results on ionospheric Joule heating
(hemispheric values multiplied by 2)

• fraction of epsilon input to Joule heating
• isolated substorms

• 1997: 70%
• 1999: 50%

• storm-time (Dst < –40  nT) substorms
• 1997: 46%
• 1999: 48%

• typical (median) total Joule heating
• isolated substorms: 1015 J
• storm-time substorms: 2 x 1015 J
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Sometimes epsilon seems ”too large”

• December 17, 1997
• large IMF X-component

• large epsilon input
• weak ionospheric dissipation

• hemispheric JH 11% of ε
• exclusion of IMF X-component 

reduces the input estimate to 
42% of the “typical” epsilon

• Is this in favor of the 
Poynting flux interpretation of 
epsilon?
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epsilon without IMF X-component

• epsilon with BT
• moves some “outliers” 

closer to the regression 
line

• does not improve the 
input–output correlation

• Conclusion
• epsilon is a transfer 

function estimating how 
much of solar wind total 
energy (kinetic and 
EM) is transferred into 
the magnetosphere

• The upstream Poynting 
flux is not so important 
but BZ is !
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Ring current and the Dst index

• Dessler-Parker-Sckopke (DPS) relation

• zeroth approximation

• SW pressure correction

• major contributions to Dst*
• tail currents ~ 25%
• ground induction ~ 25%
• consistent with Polar/CAMMICE data (Turner et al., 2001a)
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Disspation through the ring current
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• injection rate + decay (with time constant τR )
• from the DPS formula (pressure corrected)

• considering the tail and ground induction effects

• a factor of two reduction in RC dissipation estimates
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Study of 6 storm events
(Turner et al., 2001b)

• Joule heating and auroral precipitation using the AMIE 
technique

• ring current dissipation from Dst* with 50% reduction
• relative energy output (intergrated power over the 

storms)
• Joule heating: 44 – 69%
• Auroral precipitation: 17 – 35%

ionospheric total: 78 – 87%
• ring current: 9 – 16%
• plasmoids: 4 – 13%

• integrated epsilon input and total output in rough balance
• plasmoid energy not well estimated
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Conclusions on global energy budget

• Ionosphere seems to be able to dissipate more than 
75% of input energy (if calculated as epsilon).

• Ring current disspates some 10–20%. 
• Most of the remaining energy is released downwind 

from the tail.

• Note: 
• epsilon is not necessarily scaled right  ⇒ there may be 

room for larger output through tail processes
• be careful with power vs. energy!

• different processes have different time scales

But is this kind of budgeting practice satisfactory ?
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Part 2: Energy conversion

• coronal heating
• flares
• CME release
• SEP acceleration
• acceleration in the magnetosphere
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• Problem:
• chromosphere:  10 000 K
• corona 1 000 000 K
• jump at a thin transition layer

• There is enough energy but 
how is it stopped exactly at 
the thin transition layer ?
• role of microflaring ?
• Alfvén waves ?

Coronal heating
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Energy release in flares

• power 1020 – 1021 W
• total energy release up to 1025 J

• resemblance with substorms but 1010 times more energy involved
• temperatures within flares up to 100 MK.
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Energy conversion:
• magnetic energy

→ electron kinetic energy
→ X-rays (EM radiation)

Flare X-rays
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CME release

• total kinetic energy leaving the Sun: 1024–1025 J
• conversion of magnetic energy to kinetic energy

• relationship to flares to be understood



40

Acceleration of solar energetic particles

• large differences between 
individual events
• energies
• temporal evolution

• reconnection
• solar flares
• CME release

• shock structures
• near the Sun
• interplanetary space
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Storm-time injections to radiation belts

> 875 keV

> 160 keV > 5 MeV

> 15 MeV

CRRES electron observations
August 1990 – October 1991. 
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Appearance of killer electrons

CRRES observations of electrons > 5 MeV; 
August 1990 – October 1991. 
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Storm-time acceleration

• modeling of the March 
1991 storm (Li et al., 1993)

• rapid compression of the 
magnetosphere
• ∂B/∂t = – ∇ × E
• acceleration in MeV–range 
• rapid (~1 min)
• needs an energetic seed 

population
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Role of substorms: X-line formation

• rapid near-Earth neutral-line formation /  current 
disruption leads to strong inductive electric field
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Electron acceleration near X-line, 
substorm expansion phase

• time-varying MHD-simulation 
(courtesy J. Birn)

• 35 keV → 180 keV in 7 min
• Is this efficient enough ?
• Does this provide sufficient 

seed population for storm-
time acceleration ?
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The future
(if there are any students present, wake up)

• Look for relevant questions
• avoid to do ”just another isolated substorm study” 
• try to answer open questions instead of once more 

confirming accepted results
• there are several in PHYSICS of space weather

• Move away from cartooning and hand-waving
• be more quantitative
• learn to estimate errors
• do not make statistics for too few data points

• Read literature
• wheel, gunpowder, and a few other things have already 

been invented 
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Thank you !
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