Tidal Coupling in the Earth's Atmosphere

Maura Hagan NCAR High Altitude Observatory

Maura Hagan

CEDAR Prize Lecture

OUTLINE

- Motivation Observations
- Tidal Nomenclature/Characteristics/Sources
- Results from the Global-Scale Wave Model (GSWM)
- Results from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)
- Cautionary Words on the Interpretation of Measurements

Ubiquitous - Persistent - Measurable

periods - harmonics of a solar day

migrating - propagate westward with the Sun

Maura Hagan

- produce variations with longitude

The Global-Scale Wave Model Results

- Solutions to the 2-D linearized steady-state tidal equations
- •A priori:
 - frequency wave number background atmosphere
- Non-classical response: background U background δT/δθ dissipation
- •Tidal forcing parameterizations: absorption of solar radiation* latent heat release
- Monthly tidal climatologies**

• ~60 m/s peak near +/-30° & 105 km

• Symmetric phase

• > 75 m/s peak near +/-20° & 105 km

• Asymmetric phase

• > 15 cm/s peak near 0º & 100 km

• Symmetric phase

• > 25°K peak near 0° & 115 km

Symmetric phase

GSWM-00 Results January Diurnal Meridional Winds

Maura Hagan

Peaks comparatively higher than the diurnal tide

Comparatively stronger responses at mid-high latitudes

Comparatively weaker responses in the mesosphere

Comparatively longer vertical wavelength

No pronounced hemispheric phase asymmetry GSWM-00 Diurnal Wind Amplitudes and MLT Radar Wind Analysis

near 92 km

Results

after Pancheva et al., 2002

GSWM-00 Semidiurnal Wind Amplitudes

and MLT Radar Wind Analysis Results near 92 km

after Pancheva et al., 2002

Excitation:

Absorption of

Absorption
of
Solar RadiationIR: troposphere
UV: strato-mesosphere
EUV: thermosphere

Latent Heat Release

Raindrop formation → in deep clouds: tropical troposphere

Wave - Tide Interactions

Maura Hagan

GSWM Tidal Forcing due to Latent Heat Release

The Global-Scale Wave Model Results

MLT Response to Diurnal Tropospheric Latent Heat Release

5 Major Component Solutions: $\Delta U > 10 \text{ m/s}$ $\Delta V > 10 \text{ m/s}$ $\Delta T > 10 \text{ cK}$

Westward 1 (W1) - migrating Westward 2 (W2) Standing (S0) Eastward 2 (E2) Eastward 3 (E3)

Maura Hagan

GSWM Diurnal Meridional Wind - 98 km

NCAR

GSWM Diurnal Zonal Wind - 98 km

NCAR

GSWM Diurnal Temperature - 115 km

GSWM-00 migrating tide

GSWM-02 = GSWM-00 + latent heat response

The GSWM does:

Produce robust monthly climatologies of both diurnal & semidiurnal tides
Account for two plausible tidal sources; absorption of solar radiation throughout the atmosphere, and tropospheric latent heat release
Capture many/most of the dynamical tidal features that are observed in the MLT
Provide tidal boundary conditions for models that don't have realistic lower or middle atmospheres

The GSWM does not:

Quantify day-to-day tidal variability

Include chemical dynamical tidal effects

- also observed in the MLT

Account for nonlinear effects:

- acceleration of the mean flow by dissipating tides
- wave-tide or tide-tide interactions*

*important tidal sources

<u>BUT</u>, the... Thermosphere-Ionospere-Mesopere-Electrodynamics General Circulation Model (TIME-GCM)

Maura Hagan

CEDAR Prize Lecture

does

The 3-D 1st Principles Calculation Thermosphere pressure coordinates; ~30-500 km Ionosphere Resolution: horizontal - 5° x 5° Mesosphere vertical - 2 grid points /scale height Electrodynamics •5-minute time step 1-year simulation focus on April 9, 1993 General Lower Boundary Conditions: Circulation a) GSWM Migrating Tides b) GSWM + NCAR/NCEP Model daily data -> PWs Simulations

Planetary Wave-Tide & Tide-Tide Interactions

$$cos(\sigma_{1} + s_{1}\lambda) cos(\sigma_{2} + s_{2}\lambda) \rightarrow (\sigma_{1} + \sigma_{2}, s_{1} + s_{2}); (\sigma_{1} - \sigma_{2}, s_{1} - s_{2}); (2\sigma_{1}, 2s_{1}); (2\sigma_{2}, 2s_{2})$$

-for example-

Migrating Diurnal (westward wavenumber 1; **W1**) Tide: $s_1 = -1$ (positive eastward); $\sigma_1 = 1/24$

Stationary Planetary Wave 1 (PW1): $s_2 = 1$; $\sigma_2 = 0$

(0, 1/24) Standing (SO) Diurnal Tide
(-2, 1/24) Westward 2 (W2) Diurnal Tide
(-2, 1/12) Migrating Semidiurnal Tide
(2, 0) Stationary PW2

Maura Hagan

TIME-GCM Control Case Results Diurnal Meridional Wind on April 9

after Hagan and Roble, 2001

Maura Hagan

CEDAR Prize Lecture

TIME-GCM "Realistic" Results Meridional Wind Components on April 9

- Migrating diurnal tide
- Up to 50%
 smaller than
 control case

- Stationary planetary wave 1
- Propagates
 upward into
 the NH MLT

NCAR

Maura Hagan

CEDAR Prize Lecture

Maura Hagan

NCAR

CEDAR Prize Lecture

Equatorial Nonmigrating Diurnal Tidal Temperatures

CRISTA 50 tide is largely attributable to the tropospheric latent heat source.

CRISTA W2 response is dominated by the nonlinear interaction source.

NCAR

Ground-Based Radar Locations for TIMED-CEDAR Studies

Courtesy of Scott Palo & Xioali Zhang

Maura Hagan

TIMED SABER Temporal Sampling

SABER Footprints → as a function of Local Solar Time

← SABER Footprints as a function of Universal Time

TIDAL ALIASING: LST is constant at a given latitude along ascending/descending orbit tracks

NCAR

Maura Hagan

Outlook

• **TIMED-CEDAR** observations promise new insights into tidal structure and variability, for the **semidiurnal tide** in particular.

• Studies of tidal effects on lower thermospheric electrodynamics provide exciting opportunities to investigate coupling into the ionosphere and upper thermosphere.

• The developing Whole Atmosphere Community Climate Model (WACCM) allows for self-consistent studies of (almost) all tidal sources.

• The **TIME-GCM and GSWM remain valuable**; both as "independent" research models and as diagnostic tools for WACCM studies.

NCAR

Thank You

Jeff Forbes (CU/AeroEngSci) Ray Roble (NCAR/HAO)

The CEDAR, SCOSTEP, UARS, & TIMED Communities

Scott Palo & Xiaoli Zhang CU/AeroEngSci Dora Pancheva, Dennis Riggin, Joe She U Bath CoRA CSU

Maura Hagan