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Purpose of Data Assimilation

To combine atmospheric

measurements with our knowledge of

atmospheric behavior, as codified in

computer models, thus producing a

"best" estimate of current conditions.

Such analyses have great diagnostic value and
are also the basis for numerical prediction.



What information do we need to do the job?

• Observations

- always imperfect, sometimes with gross errors

- often indirect, or highly processed

- never completely adequate in coverage or information
content

• Numerical Prediction Model

- also imperfect, but

- model imposes dynamical consistency between mass and
wind fields and approximates physical processes

- model ensures smooth evolution of atmospheric conditions
(temporal continuity)

- Accurate model provides good first guess (a priori informa
tion partly dependent on earlier observations). First
guess usually needs only minor corrections based on
current observations.
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Common Problems in Data Assimilation

e The analyzed field does not match a
realizable model state.

o The distribution of observations is
highly non-uniform.

e The observed variables do not match
the variables predicted by the model.

• Observing systems are diverse, each
subject to different kinds of error,
sometimes poorly known.
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An Analogy

Human body <-> Numerical prediction model

Human digestion <-> Data assimilation

No single food group is adequate for good nutrition.

No single type of observation is adequate for a good
forecast.

Too little food leads to malnourishment and poor health

Too few observations leads to a poor forecast.



An Analogy (continued)

Some foods (raw fish) are distasteful, so we cook them first
or we may change our tastes (Japanese like sushi).

Some observations are difficult to assimilate directly into
the model, so we either process the observations to make
them look more like model variables or we calculate what
the observation would be, given the model state variables.
Then assimilation becomes easier.

Tainted food makes us sick; sanitation helps.

Erroneous data make the model sick; quality control helps



Simple proUe™

Es+tmarte an unknown ouarrlrty Xbom two collocated
measuremen+3 y, and y2 subject +o errors £, and £2 .

y.-xtf,

y2 - x+£2

Assume E(£,)=E(£2)-0 and EC^g^O
c() fs -Hie s+a+fs+ical mean.

Define ^2=E(6,2) $ *£{&) '

lorm -Hie linear es+imafe

X/-=alyl + o^y2

Subject +o E(x'-x) =0

TV)is implies *Hia+ ct +a^sl .

Finallyf we require -Hia+" (T2= £[[x-x)*] be minimised

Solution:

J- -i-J-J-
6* "<sf+ <5i*



Equivalent" problem ;

Find an estimate fc ot x Hat is close to
-Hie observations. Do this by minimizing
"H)e distance" bekwetn P and -Hie observations:

The P wVjicli minimizes J is -Hie savne as-Hie

estimate X,' just discussed.



Next, consider the more complicated situation:

many observations

different kinds of instruments measuring the
same quantities

observations in different places

different quantities measured, but all related
to the variable to be estimated

independent information from a model

spatially correlated errors

X@ X X X X X

x xwx©x x x <§> temperature measured by rawinsonde

x <§>x @ © temperature measured by aircraft
X X X X >L XL

x x x -x ju « © radiance measured by satellite
K&y

X X X X X X



3-D Variational Analysis

Basic idea: Minimize cost (penalty) function.

J(x) = (x-xb )TB1(x-xb) + (y-K(x))T(0+F)'1(y-K(x))

The first term fits the analysis to the background.
The second term fits the analysis to the observations.

Explanation of terms:

x_ gridpoint variables (variables carried in the model);
the analyzed state to be determined (a vector)

xb the background (first guess) provided by a short-
— range numerical forecast (a vector)

y observations of all kinds (a vector)

K forward linear model, which interpolates from the
~ model grid to the observation location and, if

necessary, converts from the model variables to the
observed variables (a matrix).

B background error covariances; B contains statistical
— information about errors in the short-range forecast

that provides the background (a matrix).

O observation error covariance; contains statistical
~ information about errors in the observations (matrix)

F covariance of errors in the forward model (matrix)
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How Variational Assimilation Works

"Forecast Observations"

"Observation

Operator"

Interpolate to
time/place of
observations

Forecast

Observation

Increments

Map back to
model variables

Interpolate to
to model grid

NWP

Fields

Observed

Variables

Model

Variables

Forecast

Raw

Observations

Pre-processing

Pre-processed
Observations

Original diagram by
John Eyre, 1994



Practical Details

• Large dimensionality of the problem

• Determination of error covariances not easy

• Effect of background error covariance matrix approximated by filters

• Minimum of penalty function determined iteratively using conjugate

gradient method (steepest descent method more popular in Europe)

• Preconditioning helps to accelerate convergence toward solution.

• Choice of vertical coordinate on which to analyze deserves careful

consideration.

• Variational constraints (relating the mass and wind fields) may be

added to the penalty function to force more balanced flows in the

analysis.
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Transmitter

Receiver

For each limb path, the frequency data, averaged over a suitable time interval,
and the information on the orbital geometry should be converted to values of:'

• impact parameter p = r, sin fy = r2 sin cp2
• angle of refraction e
• latitude and longitude of tangent point
• direction on the earth's surface of the plane of the measurement
• adjustment of e and p for ionospheric effects

Eyre, j.r., 1994: John Eyre, 1994
Assimilation of Radio Occultation Measurements into a Numerical Weather
Prediction System. Research Department Technical Memorandum No.
199 (May), European Centre for Medium Range Weather Forecasts, 22 pp.
+ 4 tables + 10 figs.



JPL
OBTAINING TEMPERATURE AND PRESSURE FROM REFRACTIVITY

Dry Moist Ionosphere

N=(n-l)xlO6 =77.6^ +3.73xl05^ - 40.3xl06-^
+ higher orderionospheric terms

Equation of state

p=0.3484^

• Hydrostatic equilibrium equation

t
density

n = index of refraction
N = refractivity
P = pressure
T = temperature
Pw= water vapor pressure
ne = electron density
f = operating frequency
p = density
h = height
g = gravitational acceleration

HAJJ'et al., URSI GPS/MET Workshop



Three Options for the Assimilation of Radio Occultation Data

(Eyre, 1994)

Option 1: Direct assimilation of bending angle

• Observations assimilated in "raw" form; error characteristics

fairly simple

• Forward operator K is fairly complicated

- Interpolate model temperature, humidity, and pressure at

each level into the plane containing both satellites and the

earth.

- for a given value of the impact parameter p and from the

model variables interpolated into the plane of occultation,

calculate the bending angle s



Option 2: Assimilation of retrieved profiles of refractivity

• Bending angles s are inverted prior to assimilation

using the Abel Transform, which gives refractivity

profile at the tangent point (assumes spherical

symmetry)

• Retrieval errors associated with refractivity profile

difficult to specify

• Interpolate model fields to point of tangency and

compute refractivity profile from temperature and

moisture (forward operator).



Option 3: Assimilation of retrieved profiles of temperature
or humidity

• In neutral atmosphere, refractivity depends upon

temperature and humidity, and the effects of each are

hard to separate. Could use low-level moisture profile

from model to infer temperature profile from occultation;

could retrieve temperature directly from refractivity in

high, cold upper troposphere and stratosphere

• Error characteristics of these retrievals very difficult to figure

• Forward operator very simple: linear interpolation of

temperature or moisture sounding to point of tangency.



Extension of variational assimilation to the time dimension

• Four-dimensional variational assimilation (4DVAR)

- Fits a sequence of model states to a time sequence of
observations

- Penalty function has background term valid at t0;
observation term contains model states and observations

at times between t0 and t0+At, the assimilating interval.
- Model equations relate the state at xn+1 to the state at xn.
- Wait until the end of the assimilation interval to do 4DVAR;

initial state that is the solution to 4DVAR is at the beginning

of the interval.

• Extended Kalman Filter
- Sequential correction of model state for each new set of observations
- Background error covariances evolve in time.
- System is integrated forward in time.

• Both methods very expensive computationally.



Summary

The basis of variational assimilation is to find an estimate

of the model state x that minimizes the penalty function

J(x) = (x-xb)TB-i(x-xb) + (y-K(x))T(0+F)-Hy-K(x))

Makes the estimate
close to the back

ground (the a priori
estimate that comes
from the prediction

model

Makes the

estimate close to

the observations

Most of the work in variational assimilation involves

• Making the problem computationally efficient
• Estimating or approximating B, the background error

covariances

• Estimating O, the observation error covariances, and
F, the errors of representativeness


