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Solar and Heliospheric
Aspects ot 5-T Coupling

® Geoeffective Disturbances

¢ Coronal Mass Ejections
» Solar signatures
» Interplanetary signatures
» Magnetic topology

¢ High-Speed Streams
¢ High Density

® Application to 1997 cases



Solar Signatures of CMEs

White light
® Halo CMEs

Ho

® Filament
Eruptions

X-rays, EUV
® Arcade events
® Dimming

® Sigmoids

® EIT (Moreton)
waves
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Arcade Examples: polar, diagonal, AR

February 25, 1992 (04:35) January 26, 1992 (19:28)
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Dst and Halo CMEs
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Interplanetary
Signatures of CMEs

® Widely used
¢ Counterstreaming electrons

¢ Large-scale magnetic field
rotation

¢ Low temperature

¢ Strong, steady magnetic
field

¢ Preceding shock (fast
CMESs)

® Other

¢ Cosmic ray depressions

¢ Pronounced temperature
anisotropy

¢ Composition anomalies
¢ Charge state anomalies

Magnetic
cloud




Counterstreaming Electrons
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Polarity
change

@ Suprathermal electrons carry
heat flux away from Sun

@ Counterstreaming indicates
closed magnetic topology

@ Direction of dominant heat flux
Indicates magnetic polarity



Ecliptic Plane Lepping et al. [1993



Solar Field Imprint on CMEs

® CMEs arise from helmet streamer belt
® Solar dipole controls leading field

® Neutral line/filament controls axis
orientation

® Solar hemisphere controls chirality
® CMEs blend into sector structure

flux rope

outer coils
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Cloud type depends on solar cycle
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Filament Topology
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Real-time Prediction

dipolar arcade
skewed arcade ® 2_7 Sep 97
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cloud at
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McAllister et al. [1999]



Mixed Results

® Predicted
¢ Cloud occurrence
¢ Cloud helicity
¢ Cloud axis orientation
¢ Storm occurrence

® Not predicted

¢ No B-south encountered
in cloud

¢ B-south in sheath




Statistical Results

Filament Cloud

oc

® Oc -1.4+0.70 +18°
® max B-south « 0 +5°
@ At B-south o« 0 =+5°

Zhao and Hoeksema [1997, 1998]



Sector Polarity from Heat Flux Data

BDEs mark CMEs. Most CMEs carry polarity of sector in which
they are embedded and thus do not disrupt sector structure.
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Counterstreaming Electrons

Polarity
change

e Suprathermal electrons carry
heat flux away from Sun

® Counterstreaming indicates
closed magnetic topology

e Direction of dominant heat flux
indicates magnetic polarity



High-speed streams compress

Fast flow
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e Fast flow runs into slow flow and creates
corotating interaction region (CIR)

@ Strengthens any B-south
@ Increases density
e Compresses trailing edge of passing CME



Ma%netic Polarity Effect
in High-Speed Streams

toward

| | | | | | |

11 16 21

® Toward fields in spring (NH) favorable for
Russell-McPherron effect

® Enhance B-south in Alfvenic fluctuations
found in high-speed flow

® Causes sustained activity in stream with
toward polarity



SOLAR ROTATION
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High Density

® Density in CMEs is usually low at 1 AU,
owing to expansion.

@ Density leading and trailing CMEs is
usually high, owing to both solar source
and interplanetary compression.

@ Dst responds to density rise in 3 ways:

¢ Through dynamic pressure rise

» (1) Strengthens magnetopause currents,
which increase Dst.

» (2) Correlates with Dst decrease
[Murayama, 1980; Fenrich and Luhmann, 1998].

New! > ¢ Directly, with delayed response

» (3) Increases ring current density when B is

southward, with 4-5 hour delay
[Smith, Thomsen, Borovsky , and Collier, Spring

AGU Meeting].

® High density most geoeffective when
B-south is in sheath or CIR.




ILLING AND HUNDHAUSEN: CORONAL Mass EJECTION
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Selected Case Studies

e January 6-11, 1997
Unremarkable solar signatures
¢ Halo CME

¢ Obscure filament eruption
» predicted B-south duration, 14 hrs, observed, 13 hrs
» predicted B-south max, -13 nT; observed, -15 nT

¢ Minor arcade event

Clear interplanetary signatures
¢ Leading B-south in magnetic cloud, as predicted
¢ B-north in high-density filament/CIR
¢ No sustained activity from following stream
e April 7-12, 1997
Excellent solar signatures
¢ Halo CME
¢ Filament eruption
¢ EIT wave
¢ Sigmoid, dimming, arcade
Complex interplanetary signatures
¢ Multiple ejecta
¢ Cloud-like feature, no field rotation within

¢ B-south in high-density plasma
¢ No sustained activity from following stream




Probable Cause of 10 Jan 97 Geomagnetic

Storm
Loop Vanished on 06 Jan

03 Jan
H-ct Images From Sac Peak, SOON, & Pic du Midi



January 9-11, 1997
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April 9-11, 1997
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What does NOT make
structures geoetfective?

® CMEs are NOT geoeffective because they
are massive.

® High-speed streams are NOT geoeffective
if their magnetic polarity is unfavorable for
the Russell-McPherron effect.

e High density is NOT geoeffective if the
IMF points northward.



What makes structures geoettective?

KEY WORDS: southward IMF, compression

® CMEs are geoeftective because
¢ They usually contain southward IMF.

¢ If fast, they compress southward IMF and density
structures.

¢ They create southward IMF by distorting the
ambient field.

¢ They bring high-density structures.

@ High-speed streams are geoeffective because

¢ They compress southward IMF and density
structures in CIRs/CMEs.

¢ The Russell-McPherron effect enhances southward
IMF in the Alfvenic fluctuations in streams if the
polarity is favorable.

¢ The solar wind electric field is proportional to speed.

® High density during southward IMF is
geoeffective because
¢ It increases ring current density.



