1998 CEDAR Workshop Boulder, Colorado June 7-12, 1998

CEDAR Prize Lecture

by Gary Swenson University of Illinois

A Model for Calculating Acoustic Gravity Wave Energy and Momentum Flux in the Mesosphere from OH Airglow

"A model for calculating Acoustic Gravity Wave energy and momentum flux in the mesosphere from OH airglow"

Swenson, G. and A.Z. Liu, GRL, <u>25</u>, 477, 1998. {University of Illinois, Urbana, IL 61801; swenson1@uiuc.edu}

* <u>Vertical flux of horizontal momentum</u>, $F_M \propto \frac{\lambda_Z}{\lambda_X} \left\langle \left(\frac{\overline{T}}{\overline{T}}\right)^2 \right\rangle$

* OH Airglow, Dynamic Response to AGWs

$$\frac{\rho'}{\rho} = -\frac{T'}{T}, \qquad \left| \frac{\Gamma/I}{\rho} \right| \sim 3 => CF \text{ (for large } \lambda_z)$$

[Swenson and Gardner, JGR-Atmospheres, 103, 6271, 1998]

* Starfire 95' Data- 5 nights (2/2, 2/3, 4/1, 4/2, 4/4, 1995)

-161 Waves, Intrinsic Parameters $\lambda_x=28.8 \text{ km}$ $C_o=33.4 \text{ m/s}, C_I=61.4 \text{ m/s}$ $\tau_I=7.8 \text{ minutes}$ $\lambda_z=26.6 \text{ km}$ I'/I=3.8%

 $|F_{M}|=21.9 \text{ m}^{2}\text{s}^{-2}$ $F_{M.ZONAL}=-5.3 \text{ m}^{2}\text{s}^{-2}$, $F_{M.MERIDIONAL}=6.1 \text{ m}^{2}\text{s}^{-2}$

[Swenson, Haque, Yang and Gardner, JGR, Submitted, 1998] * Summary and 'Where do we go from here?' $\rho'/\rho \simeq \varepsilon e^{\beta(z-z_{\rm OH})} \cos \left[\omega t - kx + m(z-z_{\rm OH})\right]$

where,

 ρ ' is the change to $\rho,$ the undisturbed mass density,

 ε is the wave amplitude at altitude z_{OH} (88 km),

<u> $1/\beta$ is the amplitude growth length (= 2H for</u> undamped waves),

 ω is the intrinsic frequency,

 $m = 2\pi/\lambda_z$ is the vertical wave number,

 $k = 2\pi/\lambda_x$ is the horizontal wave number,

 λ_z is the vertical wavelength, and

 λ_x is the horizontal wavelength.

$$\mathbf{F}_{\mathbf{E}} = \frac{-\rho_{\mathbf{O}} \lambda_{\mathbf{Z}}^2 \quad \mathbf{g}^2}{\lambda_{\mathbf{X}} \tau_{\mathrm{BV}} \quad \mathbf{N}^2} \left\langle \left(\frac{\mathbf{T}}{\overline{\mathbf{T}}}\right)^2 \right\rangle \tag{1}$$

$$\mathbf{F}_{\mathbf{M}} = \frac{\lambda_{\mathbf{Z}} \quad \mathbf{g}^2}{\lambda_{\mathbf{X}} \quad \mathbf{N}^2} \left\langle \left(\frac{\mathbf{T}}{\overline{\mathbf{T}}}\right)^2 \right\rangle$$
(2)

substitute
$$\frac{T'}{T} = \frac{I'_{OH}}{I_{OH}} \cdot \frac{1}{CF}$$
 (3)

$$\mathbf{F}_{E,87km} = \frac{2.3 \cdot 10^{-3} \lambda_{z}^{2} (I_{OH})^{2}}{\lambda_{x} \cdot CF^{2} (I_{OH})^{2}} \qquad (W m^{-2})$$

$$\mathbf{F}_{M,87km} = \frac{6 \cdot 10^4 \lambda_z \quad (I'_{OH})^2}{CF^2 \ \lambda_x \quad (I_{OH})^2} \qquad (m^2 s^{-2})$$
(5)

$$CF(\lambda_z) = 3.5 - (3.5 - .01) \cdot e^{-.0055 \cdot (\lambda_z(km) - 6)^2}$$
(6)

$$k_4$$

 $H + O_3 => OH^* + O_2.$ (1)

$$V(8,3) = \frac{K_1[O] [O_2]^2 (200/T)^{2.5}}{(1+7.7 \times 10^{-14} \text{ cm}^3 [O_2])}$$
(2)

•

$$\rho'/\rho \simeq \varepsilon e^{\beta(z-z_{OH})} \cos \left[\omega t - kx + m(z-z_{OH})\right]$$
(3)

$$m^{2} = \frac{(N^{2} - \omega^{2})}{(\omega^{2} - f^{2})} k^{2}$$
(4)

$$\Delta V(8,3) \simeq$$

$$\left(\frac{\Delta[O]}{[O]} + \frac{(2+7.7 \times 10^{-14} \text{ cm}^3[O_2])}{(1+7.7 \times 10^{-14} \text{ cm}^3[O_2])} \frac{\Delta[O_2]}{[O_2]} - 2.5 \frac{\Delta T}{T}\right) V(8,3)$$
(5)

• •

· ·

•

· · .

(a)

$$F_{M} = \frac{\lambda_{z}}{\lambda_{x}} \frac{g^{2}}{N^{2}} \left\langle \left(\frac{T}{\overline{T}}\right)^{2} \right\rangle$$
(1)

x

$$\rho' / \rho = -T' / \overline{T}$$

.

.

•

 $= \varepsilon \cdot e^{\beta(z-z_{OH})} \cdot \cos(\omega t - kx + m(z-z_{OH}))$ ⁽²⁾

•

IR (1.5 Micron) OH Image, Nicmos Array U of Illinois and U C Berkeley, (Astronomy)

UCSD Telescope; March, 1998 S/N ~ 200, IT=60 S

Date	Horizontal Wavelength (km)		
	Mean	Std. Deviation	Std. Error
02/02/95	37.3	13.9	2.5
02/03/95	36.4	11.2	1.2
04/01/95	22.7	4.1	0.7
04/02/95	22.3	9.4	2.1
04/04/95	24.6	13.7	2.1
Overall Mean	28.8	13.0	1.0

Table for Horizontal Wavelength $\lambda_{\!x}$

150x150 pixel frame(Frame₁) taken at time T_o + t

250x250 pixel frame(Frame₂) taken at time T_o

Finding the best match on the basis of root-mean square value, equivalent to correlation function in our case, between the two frames, i.e. Frame₁ and Frame₂.

$$RootMeanSquare = \sqrt{\left[\left(1/N_1N_2\right)\sum \left(I_1 - I_2\right)^2\right]}$$

where $N_1 =$ Number of pixels in Frame₁.

 N_2 = Number of pixels in Frame_{2.} I_1 , I_2 = Intensity values of each pixel

Na Wind/Temperature Lidar Observations Starfire Optical Range, NM (3 Feb 95)

Figure 1

Na Wind/Temperature Lidar Observations Starfire Optical Range, NM

Table for Brunt-Vaisala Periods

.

Date	Brunt-Vaisala Period (minute)
02/02/95	6.2
02/03/95	5.7
04/01/95	4.7
04/02/95	4.6
04/04/95	4.3
Mean	5.1

•

.

Intrinsic phase speed on all the five nights (02/02/95, 02/03/95, 04/01/95, 04/02/95, 04/04/95) as a function of time. The hourly mean of the five nights is shown as a bold line.

Local Time

Date	Intrinsic Phase Speed (m/sec)		
·	Mean	Std. Deviation	Std. Error
02/02/95	63.7	21.1	3.7
02/03/95	68.2	17.0	2.9
04/01/95	57.6	12.5	2.1
04/02/95	57.4	17.0	3.8
04/04/95	59.1	18.8	2.9
Overall Mean	61.4	17.8	1.4

.

.

Table of Intrinsic Phase Speed C_i

Intrinsic phase speed (C_i) on all the five night: (02/02/95, 02/03/95, 04/01/95, 04/02/95, 04/04/95) in a polar plot. The Y-Axis is represented as meter/sec and indicates the magnitude of C_i . The frequency and wave numbers are related through the dispersion relation

$$m^{2} = \frac{(N^{2} - \omega^{2})}{(\omega^{2} - f^{2})} k^{2}$$
(1)

N - buoyancy frequency f- inertial frequency .

For Albuquerque imager data, $N > \omega >> f$, or $\tau_{B-V} < \tau_I << \tau_f$

$$m^{2} = \frac{(N^{2} - \omega^{2})}{(\omega^{2})} k^{2} = \left(\frac{N^{2}}{\omega^{2}} - 1\right) k^{2}$$
(2)

Therefore:

۰.

$$\lambda_{z} = \frac{\tau_{I}C_{I}}{\sqrt{\frac{(\tau_{I})^{2}}{(\tau_{B-V})^{2}} - 1}}$$
⁽³⁾

 τ_{B-v} - Brunt-Vaisala period.

The mean conditions observed here result in

$$\lambda_z \sim 1.3 \tau_{B-V} C_I \tag{4}$$

.

Date	Vertical Wavelength (km)		
	Mean	Std. Deviation	Std. Error
02/02/95	32.5	11.8	2.1
02/03/95	30.9	7.0	1.2
04/01/95	23.3	10.6	1.8
04/02/95	25.0	5.0	1.1
04/04/95	22.3	4.8	0.7
Overall Mean	26.6	9.4	0.7

.

Table of Vertical Wavelengths λ_z

(Alexander, pc)

1

Horizontal Wavelength (λ_h) and C_i From StarFire Campaign

)

1

$$F_{M} = \frac{\lambda_{z}}{\lambda_{x}} \frac{g^{2}}{N^{2}} \left\langle \left(\frac{T}{\overline{T}}\right)^{2} \right\rangle$$
(1)

$$\rho' / \rho = -T' / \overline{T}$$

= $\varepsilon \cdot e^{\beta(z-zoh)} \cdot \cos(\omega t - kx + m(z-z_{OH}))$ (2)

{where $var(\rho'/\rho) = var(-T'/\overline{T}) = \langle (\epsilon \cos[])^2 \rangle$ and for monochromatic waves $\cong .5 \epsilon^2$ }

substitute
$$\frac{T}{T} = \frac{I_{OH}}{I_{OH}} \cdot \frac{1}{CF}$$
(3)
$$F_{M,87km} = \frac{6 \cdot 10^{4} \lambda_{z}}{CF^{2} \lambda_{x}} \frac{(I_{OH})^{2}}{(I_{OH})^{2}}$$
(3)
$$\frac{\partial \psi_{eMSon}}{\partial \xi_{L}} = \frac{\int L_{I_{U}}}{\int CF^{2} \lambda_{x}} \frac{(I_{OH})^{2}}{(I_{OH})^{2}}$$
(3)
$$\frac{\partial \psi_{eMSon}}{\partial \xi_{L}} = \frac{\int L_{I_{U}}}{\int CF^{2} \lambda_{x}} \frac{(I_{OH})^{2}}{(I_{OH})^{2}}$$
(3)

$$CF(\lambda_z) = 3.5(1 - e^{-0.0055 \cdot (\lambda_z(km) - 6)^2})$$
(5)
(Assumes 'No Growth', i.e. $\beta = 0$)

Table of Vertical Fluxes of	Horizontal Momentum
-----------------------------	---------------------

•

Date	Momentum Flux (m ² /s ²)	
	Zonal Component	Meridional Component
02/02/95	2.4	7.9
02/03/95	-5.4	-3.0
04/01/95	-10.0	12.7
04/02/95	-3.2	1.3
04/04/95	-8.2	8.6
Mean	-5.3	6.1

Parameters	Overall Mean
a) Horizontal Wavelength (λ_x)	28.8 km
b) Observed Phase Speed (C_o)	33.4 m/s
c) Relative Perturbed Airglow Intensity (I'/I)	3.8%
d) Intrinsic Phase Speed (C _i)	61.4 m/s
e) Intrinsic Period (τ_i)	7.8 minute
f) Brunt-Vaisala Period (τ_B)	5.1 minute
g) Vertical Wavelength (λ_z)	26.6 km
h) Vertical Phase Speed (C _z)	61.5 m/s
i) Momentum Flux (F _m)	$21.9 \text{ m}^2/\text{s}^2$
j) Zonal Component of F _m	$-5.3 \text{ m}^2/\text{s}^2$
k) Meridional Component of F_m	$6.1 \text{ m}^2/\text{s}^2$

.

.

.

Table of Overall Means of Different Parameters

Summary

* Vertical flux of AGW momentum flux

-deduce from intrinsinc wave parameters (λ_x, λ_z) and amplitudes, as implied from I'/I of OH airglow.

-deduce **zonal and meridional components** from propagation directions observed in **imager time sequences**.

* It is <u>crucial</u> to measure all parameters, including the wind vector in the volume to establish the intrinsic phase speed (i.e. λ_z).

It is also <u>crucial</u> to calculate λ_z using the approximation for the **dispersion relationship** as:

$$m^2 = k^2 \left(\frac{N^2}{\omega^2} - 1 \right)$$

5 nights of data from Albuquerque, NM (Feb-April, 95), with
 161 wave observations from the imager, with mean values for

$$\begin{array}{c} \lambda_{h} = 28.8 \text{ km} \\ C_{o} = 33.4 \text{ m/s} \\ C_{I} = 61.4 \text{ m/s} \\ \tau_{I} = 7.8 \text{ minutes} \\ \lambda_{z} = 26.6 \text{ km} \\ C_{z} = 61.5 \text{ m/s} \\ |F_{M}| = 21.9 \text{ m/s} \\ F_{M.ZONAL} = -5.3 \text{ m}^{2}\text{s}^{-2}, \ F_{M.MERIDIONAL} = 6.1 \text{ m}^{2}\text{s}^{-2} \end{array}$$

*Planned-2 Year Campaign at Albuquerque

- * Needs Continued refinement of CF factor OH, O2 Atmospheric, OI 557.7
 - Develop a phase of I'/I to AGW
 *AGW Growth with altitude
 *Vertical wavelength (here U is unavailable)
 - Develop spectral methods of extracting F_M from I'/I *which includes compensation for U
 - Continue evolution of improved data quality *Background measurements, continuum *Clouds, Contrails, Stars
 - Develop a climatology of F_M