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Motivation

At any given time, the Earth is
- 42 - 45% Sunlit

- 33 - 35% Dark (night)

- 20 - 25% twilight

Most CEDAR related optical observations
are limited to clear nights during 2 weeks
centered around the new Moon
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More on Motivation

Continuous observations like RADAR

Equatorial Spread F triggers

Observations of cusp emissions under sunlit
conditions

Observations of Stable Auroral Red Arcs
under sunlit condition

Conjugate auroral emissions

CEDAR tutorial, June 12, 1997
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Observe when the Sun is up

What can we do to increase the

observing time?

(when we were grad students

we did not complain about working nights and weekends)
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Early Observations

In the 11th Century, Persian bom Egyptian
mathematician, physicist, and astronomer Ibn
al-Haytham (ib^en al-hitham") or Alhazen
(MhezenO
- Colors of twilight was due to the optical properties

of the atmosphere

- Measured the height of the atmosphere by
measuring the duration of twiUght (52,000 paces)
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Early Observations (contd.)

First quantitative measurement of day sky
undertaken by Swiss physicist de Saussure
(late 18th century)

Systematic photometry of the Celestial
Sphere started by Jensen in 1898 (Jensen,
1928)
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Early Observations (contd.)

Yntema (1909) - first photometric
measurements of the night sky light
- Called it Earthlight

- Variable from night to night

- Scattered starlight could not account for the
zenith angle distribution of the intensity

- Noted similar earlier observations dating back
to 1788
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Early Observations (contd.)

Spectroscopic Observations of Auroral
Green Line (5577A) [Campbell (1895)]
- Present all the time

- Permanent aurora (due to Yntema)

- Non-Polar Aurora (due to Rayleigh, 1924)

This is what today we call Airglow (due to
Elvey, 1950)
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Terminology

Airglow: Non-thermal radiation emitted by the
Earth's atmosphere with the exceptions of
auroral emissions and radiation of cataclysmic
origin such as lightning and meteor trains -
Chamberlain (notes that essentially same as Elvey's)

Twilightglow: Sunlight shining on the emitting
region from below

Dayglow: Sunlight enters from above the
atmosphere

CEDAR tutorial, June 12,1997



So what is the challenge?

Day sky is about 10^-10^^ brighter than night
Brightness of the Full Moon is 10"^ of the Sun

Brightness of the New Moon is 10"^ of the Sun

Ice, water, land - all contribute to the

brightness of the sky near an observatory

CEDAR tutorial, June 12, 1997



loglx
kOV

30

ZO

W

CU?

-?.o

-2.0

-ao

"SiO I.. I ll II I. • I • 11 • • I

72^ S°° 8'^ 7^ goo gOO ^oo ^ ^ f»
t

Fig. 2. A sample record of the sky brightness at the zenith as a
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(X « 0.5 fi, AX =6 A) on a July day that was not very clear.
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Fig. 1, Smoothed isophotes of the daytime sky for a highly transparent atmosphere (P=0.87) and various
zenith distances Cof the sun. The surface brightness of the sky is expressed in stilbs. a) C=0®; b)
C= 30";c) C= 60^M) C= 80'.
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Find the airglow signal

T—r—r



Dayglow measurement by FPI
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80 r-
Sky spectrum

63000 6300 2

Solar spectrum

63000 6300-2 6300-4 X(A)

High-resolution spectra of sky and sun obtained by Bens, Cocger, and Shepherd (1965)
The true zero level would actually be at about —1000 mV.
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The result of subtracting the two spectra in Figure 2; the difference shows
the 6300.3 A oxygen line in the dayglow.
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Fig. 3. Profiles of D2 and Di Fraunhofer lines as computed from Priester's observation;
and Di terrestrial lines are shown for an autumn evening. The absorption lines are those o
cell at 160® with 0 field and the t components at 2000 and 4000 oersteds.
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Visible Dayglow Observations

Emission

Lymaj)-ci
Oi »P-»S

[Oi] »P-^S
NOy
Nt2PG
Ni+ 1 Ncg

[Nil *S-*D
(Oil*I>-»S
NaD

(Oi) 'P-^D
(Oj) ^Zg-^Lg-

[Ot]
OH

Dayglow Observations*

Wavelength Altitude Zenith Intensity

1216 A > 100 km 5-12 kr

1304A >100 km 2-6 kr

1355 A >100 km 0.4 kr

:fl0o-3O00A 80-140 km 1 kr

3000-4000A obs> 170 km 0.4 kr

3914 A lOtMOOkm 2-5 kr

4278 A
0.1 kr5200 A >100 km

5577 A 80-250 km 2 kr

5893 A 85-95 km 5-40 kr

6300 A >125 km 2-60 kr

7600 A 40-130 km 300 kr

8640A
25 mrU7 /I 40-90 km

2.8-4.0 II not measured, piubably 5 mr

50-90 km

• References and deuils on these emissions are given in the text. Several features show a wide range
of intensity; the true range may be less than is shown. The NO- and second posiUve N,-mtensity
applies to the strongest band.

(As summarized by Noxon, 1968)
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Strategy for Ground based optical
airglow and auroral observations

Since the signals are line emissions, and the dominant
background is continuum, use small bandpass instruments
- High spectral resolution spectrometers or photometers

- Fabry-Perot Interferometers

- LIDARs

Use conventional instruments from high altitude
- Aircrafts, balloons, rockets, spacecrafts

Exploit the difference in polarization characteristics of the
signal and background

Exploit unusual observing conditions
- Eclipses, dayside aurora (local winter)

CEDAR tutorial, June 12,1997



Strategy (Contd.)

Use new technology to improve SNR
- Detector

» CCDs have > 10 times QE of PMTs

- New optical configurations
» DGP, Hi-TIES, SCARI

- New observation geometry and analysis
» Application of tomography

CEDAR tutorial, June 12, 1997



Examples

High Resolution Photometer

- First reported observation of Dayglow by
Blamont and Donahue (1961) used a sodium
vapor cell (as the bandpass selector) which was
periodically subjected to a magnetic field
perpendicular to the optical axis (to further
discriminate the airglow signal from Rayleigh
scattered component)

Works for resonance lines of selected species
CEDAR tutorial, June 12,1997



Examples (contd.)

• High resolution Spectrometer
- So far, the airglow measurements have been carried out

by interferometers e.g., Jarrett and Hoey, 1963
{controversial)', Bens et al., 1965; Barmore, 1977 and
Sridharan et al., 1992, 1994, 1995.

• LIDARS

- Gibson and Sandford (1972) found that sodium
abundance enhancement smaller than dayglow
observations reported by Blamont and Donahue (1961)

- Clemesha et al. (1982) studied diurnal variations

- Yu et al. (1997) obtained tidal temperature
CEDAR tutorial, June 12,1997



Fig 1 Fabry-Perot interference fringes of the dayglow 5300 A01 radiation photographed at l-Observato.re DU Pic du Mid. (altitude 2877 m) on 30 August 1963 at
18" 00 GMT Exposure 5sec, f/2 camera, with a single plate Fabry-Perot interferom-mR and IS AHAL^™ INTERFERENCE FILTER. AZIMUTH DUE SOUTH OVER PYRENEES WITH

ZERO degrees elevation.



Date

October 6,1971
October 7.1971
November 2,1971
November 14,1971
July 12,1972
July 13,1972
July 15,1972

90
Height (km)

\

Fig. 1 Height distribution for 1,000 laser shots between 1205
and 1257 UT, Octobcr 27, 1971. The bars are the standard
errors due to the limited photon count. The absolute density
scale is uncertain to ±30% because a nifl^t-time calibration was

not possible on this date.

Table 2 Oay/Nlght Abundance Ratio

Time of observations (irr)
Day Night

1300-1800
1300-1800
1100-1700
1200-1300
1800-2100
0500-0900
1100-2100

1800-2200
1800-2200
1700-2200
1900-2100
2100-2400
0000-0300
2100-2300

Mean over all dates

Mean abundance during day
Mean abundance during night

1.06
1.10
0.97
1.42
0.95
0.92
1.04

1.07±0,06

Mean abundance within 3 h of noon
Mean abundance during night

0.82
1.04
0.95
1.42

0.82

1.01±0.11



TABLE 1. Specifications for the Lidar

Nighttime Daytime
Value Value

Transmitted energy 30 mJ 60 mJ

Pulse duration 2 ys 2 MS

Repetition rate 0.4 s~^ 0.4 s~

Wavelength 589 nm 589 nm

Total transmitted bandwidth 10 pm 12 pm

Receiver area 0.39 m 0.39 m

Receiver bandwidth 800 pro 30 pm

Transmitter beamwidth 0.15 mR 0.15 mR

Receiver beamwidth 0.4 mR 0.2 mR

Receiver efficiency 2.4 % 0.7 %

Height interval 1 km 1 km
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a) 24 h Amplitude
Mean Day Spring 1996

b) 24 h Phase
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components of the temperature perturbations for the 1996
Spring Mean Day at Urbana.
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Examples (contd.)

High altitude measurements

- Aircrafts

» Noxon and Vallance Jones (1962) - Oj 1.27 jim

- Balloons

» Wallace (1962) - OI6300 A

- Rockets

» Wallace and McElroy (1966) - 015577 A

- Spacecrafts
» Hays et al. (1978); Solomon and Abreu (1989)

CEDAR tutorial, June 12,1997



Wallace
McElroy

Fastie

200 300

3914& PHOTONS/cm^ . sec
Fig. 12. Rocket m^uremeots ofthe 3914 ANt+ dayglow volume emisskm rmte. The dotted line

is propoitioiial to the Nt'*' ion concentration measured by a spectrometer.

10' c?

X3914 VOLUME EMISSION (PHOTONS cm-^sec^)
Fig. 13. Theoretical contribution ofseveral excitation mechanisms tothe Na^d^giow, taken from
Wallace and McElroy (1966). Two assumptions were made conoeming the effide&cy ofsolar UV
in simultaneously Ionizing and exciting the ion. The horizontal lines correspond to the Wallace and

McElroy measurements.
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Ni0P>tO-rfW)

N(

(V^NhNO^^
OiNNftJHN^O
0(;S)fO2-»O+<^
0^D)ficm02^-M
O^D)from altenute
OQ5)fiomP2^-»«
0CS)fianN2CA3V>»O
N^X*=0)/N^X«nv)
OrZ))fiomN^>K)
OOOybammpyiOl
^'D)fiomN(V>K)

TABLE 1. Rate Coefficientt and Branching
Rate Co^tdent (cmV^) or Yield
i.dxi(r^ (r^oo)-®-55, r^i2oo

i.95xi<rV/joo)-o-7 r,<i2oo

2.05<i(r^^
i.8xi(r^®

IJxKT*®
4.0x10-^2 exp(-865/7U
1.2

-0.21ogio[(r/300)-0-7«/oj
0.12+0.021ogxol(r^00)*®%/0]
0.75 (vaO only)
0.25
0.03
0.0
0.0

Ratios

Reference

Walls and Dunn (1974];
Tofrel a/. [197Q

Me/ir and Biondi [1969];
Atge et at. (1983J

Zip/etat. [1980]
Zip/et at. 11980J
Rees and Jones (1973J
Fehseitfetd [1977]
Constantinides et at. 11979]
Stanger et al. (1972]
Abreu et at. [1983]
appiox. to Yee et al. (1989]
appiox. to Yee et al. (1989J
Piper [1982]
Cartwright (1978J
Olson and Smith [1974]
assumed

assumed



Examples (contd.)

Polarimetry

- Noxon and Goody (1962); Noxon (1963,1964)
Primarily investigated 016300 Ain dayglow
and also in daytime aurora

Special geometry
- Total solar eclipse

» Sharp et al. (1966)

- Dayside cusp
» Many

CEDAR tutorial, June 12,1997
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POL. ^ 50'A

DAYGLOW

POL.« 0%

INT.. lo

™?! polarimeter. Optical channel Acontains a polaroidset to transmit the nunimum signal from the sky background. Channel Btransmits an attenuated
maximize the signal from the sky background. When the two areequalized for the b^kground astr^out of balance component remains for an unpolarized dayriow

emission feature; the actual sky signal through one channel is several orders of magnitude greater
than the dayglow signal.
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of operation.
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Fig. 118. The twilight ray.



4278

4240

Fig. 9.14. Tracing of twilight aiiglow spectrum in the visible region The N* . rMii ,•
suggesting an auroral effect. After Nicolet [19546]; courtesy Universitrof Si^Pres"



Fig. 3. Records similar to those shown
in Fig. 2 obtained during the late night,
daytime, and early evening of De
cember 11, including the record of
optical emission from daytime aurora.
Details of the material are given in the

text.
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MULTI-VWELENGTH DAYTIME PHOTOMETER

OArGLOW
COLNTER

PMTUBC
CCXXING

UNIT

Fig. 1. Schematic diagram of the Muliiwavelength Daytime Photometer along with the novel mask system.
Temperature stabilized interference filters are shown at the front end of the instrument. The Fabry-Perot

etalon can be seen in the optical unit.
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New Instruments

- Hi-TIES

Future

-SCARI

- Application of LCD FPIs

New Techniques

- Application of tomographic techniques for 2-D
imaging spectroscopy applications

CEDAR tutorial, June 12,1997



7 Traits Common to Many Discoveries
(In Cosmic Discovery by Martin Harwitt)

The most important observational discoveries result from substantial
technological innovation in observational astronomy

Once a powerful new technique is applied in astronomy, the most
profound follow with little delay

A novel instrument soon exhausts its capacity for discovery

New cosmic Phenomena frequently are discovered by physicists and
engineers or by other researchers originally trained outside astronomy

May of the discoveries of new phenomena involved use of equipment
originally designed for military use

The instruments used in the discovery of new phenomena often have
been constructed by the observer and used exclusively by him

Observational discoveries of new phenomena frequently occur by
chance - they combine a measure of luck with the will to pursue and
understand an unexpected finding
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