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Motivation

B At any given time, the Earth is
— 42 - 45% Sunlit
— 33 - 35% Dark (night)
— 20 - 25% twilight

Most CEDAR related optical observations

are limited to clear nights during 2 weeks
centered around the new Moon
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More on Motivation
e O O

B Continuous observations like RADAR

B Equatorial Spread F triggers

B Observations of cusp emissions under sunlit
conditions

B Observations of Stable Auroral Red Arcs
under sunlit condition

B Conjugate auroral emissions
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Observe when the Sun 1S up

What can we do to increase the
observing time?

(when we were grad students......
we did not complain about working nights and weekends)
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Early Obse

m In the 11th Century, Persian born Egyptian
mathematician, physicist, and astronomer Ibn
al-Haytham (ib’en dl-hithdm”) or Alhazen
(alhezen”)

— Colors of twilight was due to the optical properties
of the atmosphere

— Measured the height of the atmosphere by
measuring the duration of twilight (52,000 paces)
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Early Observations (contd )

B First quantitative measurement of day sky
undertaken by Swiss physicist de Saussure
(late 18th century)

B Systematic photometry of the Celestial
Sphere started by Jensen in 1898 (Jensen,
1928)
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Early Observations (contd. )

B Yntema (1909) - first photometric
measurements of the night sky light

— Called it Earthlight
— Variable from night to night

— Scattered starlight could not account for the
zenith angle distribution of the intensity

— Noted similar earlier observations dating back
to 1788
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Early Observations (contd.)
T [ O B 1

W Spectroscopic Observations of Auroral
Green Line (5577A) [Campbell (1895)]

— Present all the time

— Permanent aurora (due to Yntema)
— Non-Polar Aurora (due to Rayleigh, 1924)

This 1s what today we call Airglow (due to
Elvey, 1950)
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Terminology

ZlEl:
1111
A EAH

Airglow: Non-thermal radiation emitted by the
Earth’s atmosphere with the exceptions of
auroral emissions and radiation of cataclysmic
origin such as lightning and meteor trains -
Chamberlain (notes that essentially same as Elvey’s)

Twilightglow: Sunlight shining on the emitting
region from below

Dayglow: Sunlight enters from above the
atmosphere
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So what is the challenge‘7

Day sky is about 10°-10'° brighter than night
Brightness of the Full Moon is 10 of the Sun
Brightness of the New Moon is 10 of the Sun

Ice, water, land - all contribute to the
brightness of the sky near an observatory

CEDAR tutorial, June 12, 1997 10
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EARTH ULTRAVIOLET DAYGLOW
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Fig.3. Complete Earth dayglow spectrum, adjusted to nadir viewing from 200 km at midmorning. The

various spectral bands defined at the top of the figure are the extreme, far, middle, and near-ultraviolet.

Regions of absorption by oxygen species are indicated by thick horizontal lines; emission band intervals

are shown for N, and NO, and the stronger emission lines of atomic and ionic species are shown. The NUV

emission rate was calculated assuming an Earth albedo of 0.3 and a smoothed solar irradiance, the MUV

was taken from Barth (1965), the FUV from Huffman ez al. (1980), and the EUV from Gentieu et al.
(1979).
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Fig.9. Composite UV nightglow spectrum adjusted to nadir viewing from 600 km in equatorial region.
All spectral features have been smoothed to 15 A resolution. The O, and NO molecular, the H geocoronal
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equatorial spectrum (after converting the S3-4 data to absolute units). The nightglow varies strongly with
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Find the airglow signal
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The result of subtracting the two spectra in Figure 2; the difference shows
the 6300.3 A oxygen line in the dayglow.
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Visible Dayglow Observations
EEENERE R

Dayglow Observations®

Emission Wavelength Altitude Zenith Intensity
Lyman-a 1216 A > 100 km 5-12 kr
O13P-3S 1304 A > 100 km 2-6 kr
[O1) 3P-3S 1355 A > 100 km 04 kr
NO-y 2000-3000 A 80-140 km 1 kr
N: 2PG 30004000 A obs> 170 km 04 kr
Na* 1 Neg 3914 A 100400 km 2-5 kr

4278 A
[N1] 4S-D 5200 A > 100 km 0.1 kr
(01]'D-1S 5577 A 80-250 km 2 kr
NaD 5893 A 85-95 km 540 kr
[O1] *P-1D 6300 A > 125km 2-60 kr
[O2] Zg-3Zg~ 7600 A 40-130 km 300 kr
8640 A
[O1) ' 4g-3Z9~ 127 u 40-90 km ~ 25 mr
OH 28404 not measured, probably ~5 mr
50-90 km

» References and details on these emissions are given in the text. Several features show a wide range
of intensity; the true range may be less than is shown. The NO- and second positive Ns-intensity
applies to the strongest band.

(As summarized by Noxon, 1968)
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Strategy for Ground based optical

alrglow and auroral observations

B Since the signals are line emissions, and the dominant
background is continuum, use small bandpass instruments
— High spectral resolution spectrometers or photometers

— Fabry-Perot Interferometers
— LIDARSs

B Use conventional instruments from high altitude
— Aircrafts, balloons, rockets, spacecrafts

m Exploit the difference in polarization characteristics of the
signal and background

® Exploit unusual observing conditions
— Eclipses, dayside aurora (local winter)

CEDAR tutorial, June 12, 1997 14



Strategy (Contd. )

B Use new technology to improve SNR

— Detector

» CCDs have > 10 times QE of PMTs
— New optical configurations

» DGP, Hi-TIES, SCARI

— New observation geometry and analysis
» Application of tomography

CEDAR tutorial, June 12, 1997 1 5



Example
T O I 1

i
i

m High Resolution Photometer

— First reported observation of Dayglow by
Blamont and Donahue (1961) used a sodium
vapor cell (as the bandpass selector) which was
periodically subjected to a magnetic field
perpendicular to the optical axis (to further
discriminate the airglow signal from Rayleigh
scattered component)

Works for resonance lines of selected species
CEDAR tutorial, June 12, 1997 16



Examples (contd. )
2 (D (5 I A (1 A 1

B High resolution Spectrometer

— So far, the airglow measurements have been carried out
by interferometers e.g., Jarrett and Hoey, 1963
(controversial); Bens et al., 1965; Barmore, 1977 and
Sridharan et al., 1992, 1994, 1995.

m LIDARS

— Gibson and Sandford (1972) found that sodium
abundance enhancement smaller than dayglow
observations reported by Blamont and Donahue (1961)

— Clemesha et al. (1982) studied diurnal variations

— Yu et al. (1997) obtained tidal temperature
CEDAR tutorial, June 12, 1997 17




FiG. 1. FABRY-PEROT INTERFERENCE FRINGES OF THE DAYGLOW 6300 A OI RADIATION PHOTO-

GRAPHED AT L'OBSERVATOIRE DU PIC DU Mipi (ALTITUDE 2877 m) oN 30 AUGUST 1963 AT

18P.00 G.M.T. EXPOSURE 5 SEC, f/2 CAMERA, WITH A SINGLE PLATE FABRY-PEROT INTERFEROM-

ETER AND 15 A HALF-WIDTH INTERFERENCE FILTER. AZIMUTH DUE SOUTH OVER PYRENEES WITH
ZERO DEGREES ELEVATION.
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errors due to the limited photon count. The absolute density

scale is uncertain to 309 because a night-time calibration was
not possible on this date.

Table 2 Day/Night Abundance Ratio

Time of observations (uT) Mean abundance during day =~ Mean abundance within 3 h of noon

Date Day Night Mean abundance during night Mean abundance during night
October 6, 1971 1300-1800 1800-2200 1.06 0.82
October 7, 1971 1300-1800 1800-2200 1.10 1.04
November 2, 1971 1100-1700 1700-2200 0.97 0.95
November 14, 1971 12001300 1900-2100 1.42 1.42
July 12, 1972 1800-2100 2100-2400 0.95 —_—
July 13, 1972 0500-0900 0000-0300 0.92 _
July 15, 1972 1100-2100 2100-2300 1.04 0.82
Mean over all dates 1.07+0.06 1.01+0.11
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TABLE 1. Specifications for the Lidar

Nighttime Daytime

Value Value
Transmitted energy 30 mJ 60 mJ
Pulse duration 2 us 2 us
Repetition rate 0.4 s1 0.4 s~1
Wavelength 589 nm 589 nm
Total transmitted bandwidth 10 pm 12 pm
Receiver area 0.39 m® 0.39 m?
Receiver bandwidth 800 pm 30 pm
Transmitter beamwidth 0.15mR 0.15 mR
Receiver beamwidth 0.4 mR 0.2 mR
Receiver efficiency 2.4 7 0.7 7
Height interval 1 km 1 km

HEIGHT (KM)

HEIGHT (KM)

i
|
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Examples (contd )

m High altitude measurements

— Aircrafts
» Noxon and Vallance Jones (1962) - O, 1.27 um

— Balloons
» Wallace (1962) - OI 6300 A

— Rockets
» Wallace and McElroy (1966) - OI 5577 A

— Spacecrafts
» Hays et al. (1978); Solomon and Abreu (1989)

CEDAR tutorial, June 12, 1997 18
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TABLE 1. Rate Coefficients and Branching Ratios

__Reaction Rate Coefficient (cm’s™)) or Yield Reference
O3*+¢ =040 1.6x10°7 (T,/300) 955, 1,>1200 Walls and Dinn (1974);
. Torr et al. [1976})
1.95x10°7(7,/300)07, T,<1200 Mehr and Biondi [1969);
Alge et al. [1983)
2P)1-0—N+O 1.2x10°11 Zipf et al. [1980)
PYH-Oy—NOHO 2.0x10°12 Zipf et al. [1980]
PHNO—N+NO 1.8x10710 Rees and Jones [1973)
+N=-NO*:0 1.2x10°10 Fehsenfeld [1977)
@D)-N*+0 1.3x10°10 Constantinides et al. [1979]
15+0,-30+0, 4.0x10°12 exp(-865/T,) Slanger et al. [1972)
e ) 1.2 Abreu et al. [1983)
D) from altemate -0.200g,[(T,/300)0-7¢/0] approx. to Yee et al. [1989]
0.12+0.02l0g; [(T,/300)%-7¢/0) approx. to Yee et al. [1989]
S) from N 0.75 (v=0 only) Piper [1982]
0.25 Cartwright [1978)
D) from CD3O 0.03 Olson and Smith [1974]
D) from SP)+02 0.0 assumed
D) from NCP)+O 0.0 assumed




Examples (contd )

m Polarimetry

— Noxon and Goody (1962); Noxon (1963, 1964).
Primarily investigated OI 6300 A in dayglow
and also in daytime aurora

B Special geometry

- — Total solar eclipse
» Sharp et al. (1966)

— Dayside cusp

» Many
19
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Fig. 3. Records similar to those shown

in Fig. 2 obtained during the late night,

daytime, and early evening of De-

cember 11, including the record of

optical emission from daytime aurora.

Details of the material are given in the
text.
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MULTI-WAVELENGTH DAYTIME PHOTOMETER
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Fig. 1. Schematic diagram of the Multiwavelength Daytime Photometer along with the novel mask system.
own at the front end of the instrument. The Fabry-Perot

Temperature stabilized interference filters are sh
etalon can be seen in the optical unit.
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Figure 6.8a. Surface plots of 557.7 nm emission intensities as observed from Maitri
during February 1994. The X,Y and Z axis represent the universal time, I- geomag-
netic latitude and the relative intensities in photon counts respectively.



B New Instruments

— Hi-TIES

— SCARI

— Application of LCD FPIs
m New Techniques

— Application of tomographic techniques for 2-D
imaging spectroscopy applications
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7 Traits Common to Many Discoveries
(In Cosmzc Dzscovery by Martm Harw1tt)

The most important observational discoveries result from substantial
technological innovation in observational astronomy

Once a powerful new technique is applied in astronomy, the most
profound follow with little delay

A novel instrument soon exhausts its capacity for discovery

New cosmic Phenomena frequently are discovered by physicists and
engineers or by other researchers originally trained outside astronomy

May of the discoveries of new phenomena involved use of equipment
originally designed for military use

The instruments used in the discovery of new phenomena often have
been constructed by the observer and used exclusively by him

Observational discoveries of new phenomena frequently occur by
chance - they combine a measure of luck with the will to pursue and
understand an unexpected finding
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