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models
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• Plasmasphere simulation

Next-Generation Operational Magnetospheric Models?
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How the Magnetosphere Works:
Coupling to the Solar Wind
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In ideal MHD, no transport of particles, shear stress,energy,
magnetic flux, or electric field through magnetopause.

Actual transport efficiencies:

- -'0.4% for capturing solar wind ions into plasma sheet

- -'3% of energy

- -'20% of magnetic flux

- -'20% of solar-wind electric field
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Coupling to the Solar Wind

Low-Latitude

Boiindar>' Layer

Tail Lobe Mantle

Plasma-Sheet Boundary Layer
+ Distant Plasma Sheet

Far-Tail X-line

Central Plasma Sheet

Primary transport mechanism is magnetic reconnection.

Coupling correlates strongly with southward component
of interplanetary magnetic field. (Polar-cap potential
drop, magnetic indices...)

Particles enter magnetosphere directly in polar cusp.

Polar-cap electric field pattern correlates strongly with y-
component of interplanetary magnetic field.

Lots of empirical information on magnetopause
reconnection.

Lots of confusion on how reconnection occurs in the tail.
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Internal Magnetospheric Processes
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Sunward convection through the plasma sheet.

Plasma sheet maps to most of auroral zone.

Substorms, which are sort of like bursts of convection,
disrupt the plasma sheet, auroral ionosphere, and
geosynchronous-orbit region.

In magnetic storms, fresh ions are injected from the
plasma sheet into the trapped-particle region near the
Earth, to form the storm-time ring current.

CEDAR Tutorial 6/21/96



Coupling to lonosphere/Thermosphere -
Electrodynamics
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horizontal

• Polar cap (connected to open field lines) convects
antisunward. Complicated for northward IMF.

• Auroral zone convects sunward.
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Coupling to lonosphere/Thermosphere
Particle Transport
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(From Akasofu, in Physics ofAuroral Arc Formation)

Auroral particle precipitation - mostly keV electrons.
- Highly structured discrete aurora

- Less dramatically structured diffuse aurora

Upward magnetic-field-aligned electric fields accelerate
electrons down to form bright features.

Upward En also causes upflowing keV ions.

Ion precipitation slower, less structured.
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Space Weather: Operational Needs -
Magnetosphere

Outer-belt MeV electrons

- Kill spacecraft by deep dielectric charging

- Highly variable

- Consistent observational relationship to high-speed streams
near solar minimum.

- Decrease in main phase of storm

- Increase ~ 2 days after peak of storm

- Very little is understood about the dynamics of these
particles.

Spacecraft surface charging

- Due mainly to > 10 keV electrons

- Important at synchronous orbit and earthward of that.

- This is what the Magnetospheric Specification Model was
primarily aimed at.

Magnetopause location

- Spacecraft operators need to know if they are in the
magnetosheath.

Radiation dose
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Inputs to
Ionosphere and Thermosphere

Space-Weather Models

High-latitude electric field pattern

Precipitating particle fluxes.

Basic questions:
- Can index-driven statistical potential and precipitation

patterns be made consistent with each other?

- For specification, are magnetospheric models "ever" likely
to outperform the observation-driven AIMIE approach to
specifying electric fields and precipitation patterns?

- For forecasts, can magnetospheric models predict patterns
more accurately than index-driven statistical E-fields and
precipitation patterns?

Low-latitude ionospheric electric fields:
- Observations are complex and sparse.

- AIMIE approach hasn't been applied to this problem yet.

- Three driving mechanisms:
• Winds driven by solar heating

• Winds driven by magnetospheric inputs at high latitudes

• Prompt penetration of magnetospheric heating and E at high
latitudes.

- Quantitative understanding of dynamics will require
coupled magnetosphere/ionosphere/thermosphere models

• Can't trivialize magnetosphere, ionosphere, or thermosphere
and represent the dynamics of low-latitude E correctly.
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space Weather: Present Capabilities -
Operational Magnetospheric Models

• Radiation belts

- NASA statisticid models

- Koons-Gomey neural-network model

(> 3 MeV geosynchronous electrons)

(part of MSM)

- CRRES statistical models

• CRRESRAD - dose rate

• CRRESPRO - 1-100 MeV protons

• CRRESEL - 0.5 - 7 MeV electrons

• Magnetosheath

- (Gasdynamic Convected Field Model)

• Magnetospheric Specification Model
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RCM, MSM, and MSFM

Rice Convection Model (RCM)

- Longstanding basic research model of inner and middle
magnetosphere.

- Calculates Birkeland currents, ionospheric electric fields,
magnetospheric particle populations by solving partial
differential equations.

Magnetospheric Specification Model (MSM)

- U. S. Air Force effort.

- Scaled-down version of RCM. Does not calculate

Birkeland currents. Uses data-adjusted fitting formula for
E-field. Calculates particle distributions in detail.

- Development started 1987.

- First version delivered 1990.

- Most recent update delivered Fall 1994.

- Became fiilly operational at 50th Weather Squadron, Falcon
AFB in early 1996.

Magnetospheric Specification and Forecast Model
(MSFM)

- Adds neural networks for forecasting main MSM driving
parameters from solar-wind parameters and also correction
procedures

- Development started 1991.

- First version delivered 1994.

- Transition process about to start.
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Magnetospheric Specification
and Forecast Model - Contributors

• Rice

- J. Freeman (PI), Bob Spiro, B. Bales, D. Brown, K.
Braaten, A. Chan, K. Costello, B. Hausman, J. Williams

• Phillips Lab

- W. Denig, D. Hardy, M. Heinemann, R. Hilmer, R. -
Lambour, N. Maynard (now at MRC), F. Rich

• Los Alamos

- R. Belian, T. Cayton, D. McComas, M. Thomsen

• Computational Physics
- J. Bishop

• University of Texas at Dallas
- R. Heelis, M. Hairston

• Le Toumeau University
- G. Andrews
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MSFM Objectives and Modeling Region

Objective

- To provide specifications and short-term forecasts of:
• Magnetospheric particle fluxes (-100 eV to - 100 keV).

• Precipitating electron fluxes

• Ionospheric electric fields

• Magnetospheric magnetic fields

Modeling Region

Magnetopause

Modeling
Region

0.95

Modeling
Region

Magnetopause

Equatorial Plane Noon-Midnight Meridian Plane
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MSFM Basic Equations

General Idea:

- Use state-of-the-art E and B models to follow drifting
particles backwards in time to initial or boundary condition.

particles/unit flux

Tis(x(f), =•ns|x((-15 mn), f-15 mnj -

*bound

Assume isotropic pitch angles

t- 15 mn

11s(x, t) = 11, *bound» ^bound)
rt

^bound

Llx(f)f)dt'

loss rate

X(f
V+ -^ I ds/B

Hs\J

Particle energy Energy invariant

\ /i, 1=K[jds/Bj
Bx V

Vs =
B'
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Hilmer-Voigt B-Field Model

(Hilmer and Voigt, JGR, 100,5613,1995)

Magnetopause current Cylinder with spherical cap

Ring current Blended

Tail current Generalized Tsyganenko type

Built to respond to several different real-time inputs

B-fields are pre-computed. Mapping information is stored.

Inputs:

Standoff distance Estimated from or Kp

Dst Low-latitude magnetograms

Auroral boundary index Data from DMSP J/4 instrument and

Gussenhoven algorithm. A
mapping requirement is enforced at
the plasma-sheet inner edge..

Collapse parameter* Geosynchronous particle fluxes

TUt Not used in MSFM.

* MSFM only
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Region 0
polar cap

Electric-Field Model

Region 3 «
subauroral ionosphere Region 2 -sunward-

flow,diffuse aurora

Region 1 = field-
reversal region

Region 0: Heppner-Maynard patterns for
southward IMF, scaled for size and potential drop.
Pattern type estimated from DMSP (UTD alg.)

Region 3; Penetration driven by rate of change of
auroral boundary index.

Region 2: Analytic formula for classic sunward
convection, Harang discontinuity; merges smoothly
to subauroral region.

Region 1: Power-law in latitude - smoothly joins
regions 0 and 2.
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Sample MSFM Equipotential Patterns

Three Heppner-Maynard pattern types, no penetration.
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Sample MSFM Equipotential Patterns

• Penetration pattern for increasing convection, decreasing
convection.
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E-Field Model -

MSFM Correction Machinery*

If DMSP ion-drift-meter data are available, the
ionospheric potential pattern is adjusted to ensure model
correctness on

- total potential drop

- potential drop across dawn and dusk-side sunward flow
regions

- locations of field reversals
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MSFM Ionospheric Electric Fields - How
Good Are They?
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Comparison with DMSP data for pass starting 6:00UT on day 113,
1988. Only total potential drop and pattern type were used as input
for top panel. Full corrections were applied to bottom panel.
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MSFM Ionospheric Electric Fields - How
Good Are They?
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Comparison with DMSP data for pass starting 0740 UT on day 113,
1988. Only total potential drop and pattern type were used as input
for top panel. Full corrections were applied tobottom panel.
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MSFM Ionospheric Electric Fields - How
Good Are They?
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Comparison with DMSP data for pass starting 0923 UT on day 112,
1988. Only total potential drop and pattern type were used as input
for top panel. Full corrections were applied to bottom panel.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm

November 3,1993
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Plots prepared by J. Freeman/R. Spiro and B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm

November 3,1993
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Plots prepared by J. Freeman/R. Spiro and B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm
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Plots prepared by J. Freeman/R. Spiro and B.Emery/D. Knipp forthe
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm
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Plots prepared by J. Freeman/R. Spiroand B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm
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Plots prepared by J. Freeman/R. Spiroand B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm
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Plots prepared by J. Freeman/R. Spiro and B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Comparison of MSFM and AIMIE Models
for November 1993 Storm

November 4,1993
12 UT

93 NOV 04 12:00/05 12

MH I 9

l,\ (V

24430ir40 0°
frnroit

vn933081200dvi:10kV

ELECTRIC
POTENTIAL

64 kV

MSFM

AIMIE

Plots preparedby J. Freeman/R. Spiro and B. Emery/D. Knipp for the
National Space Weather Pilot Study.
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Figure 4.7.1. Schematic northern-hemispherepolar-capconvectionpatterns for various orientations of the IMF.
The left column (i.e., a, d, andf) is for R.> 0, the center column (i.e., b) has By =0,and the right
column (i.e., c, e, and g) isfor By < 0. The top row (i.e., a, b, and c) is for strongly northward
IMF{B^)\ the middlerow (i.e., rfand e) for weakly northward IMF, and the bottom row (i.e.,/
and 5) for southward IMF. Viscous cells are marked with a "V", merging cells are marked with an
"M", and lobe cells with an "L". The "L" cells in diagram b are driven by reconnection at the
daysidemagnetopause between tail-lobe field lines and northward magnetosheath field lines, as
suggested by Russell. The cells marked with an "R" are "reclosure cells", with the sunward-
flowing portionon closed field lines. The southern-hemisphere convection {xittem is almost the
mirrorimage(reflect through the 1100-23(X) MLTline). FromReiffand Burch(J. Geophys. Res.,
90, 1595-1609, 1985).
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Possibility for Improving Ionospheric E-Fields:
Toffoletto-Hill Model

Approach:

- Assume distribution of ^normal on magnetopause and map
magnetosheath electric field along field lines to polar cap.

- Mixes theory and empiricism.
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Toffoletto-Hill Model -
Sample Polar-Cap Patterns

From Toffoletto + Hill, JGR, 98,1339,1993.
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Possibility for Improving Ionospheric E-Fields
3D Global MHD Model

Equipotential pattern in the northern ionosphere, for 1135 UT on
October 19, 1986, as computed by global MHD simulation of the
event. (Fedder et al., JGR, 100, 19083, 1995)
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MSFM Electric Fields - Summary Discussion

Strong Points:

- Based on input data tliat are already available in real time

- Sensible, reliable, conservative

- Makes an intelligent effort at estimating the penetration of
the electric field to low ionospheric latitude

Weak Points:

- Only uses three polar-cap pattern types

- Cannot represent most event-specific peculiarities.

Possibilities for Improvement of High-Latitude E:
- Use physical model of the polar cap (Toffoletto-Hill or 3D

global MHD)

- Substitute model that uses more input data. AIMIE?
IZMEM? Weimer?

- Systematic comparison tests would be illimiinating.

Possibilities for Improvement of Low-Latitude E:

- Add model of wind-generated electric fields

- Improve understanding
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Initial- and Boundary-Condition Fluxes

Basedon^P)for H+, 0+, e".

Compiled from
- Huang-Frank plasma-sheet statistics

- Garrett synchronous-orbit statistics + Baker et al. published
observations of 40-keV electrons

- Published ring-current observations (mostly AMPTE)

- NASA radiation-belt models

Magnetopause

0.95 Kegion vXXVy .2/?
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Loss Algorithms

_

Dt
= - max

^ s ^ strong,s

'Strongs

Plasma-sheet electrons:

^strong ~ ^ min

.0 - max

^ s "n weak,s

'^weak,;
,0

'strong
fi_2^
3 3j strong pitch-angle scattering

'̂ weak

> 40 keV electrons in plasmasphere

^weak ~ ^ min

Use Lyons' formulas, based on precipitation
being due to pitch-angle scattering in
plasmaspheric hiss.

Ions

Consider charge exchange only. Use
routine by James Bishop.
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Electron-Precipitation Model

Set equal to electron loss from model plasma sheet, with
no field-aligned potential drop.

Fluxes specified in four energy bins.

If detailed data are available from DMSP J/4 electron

detector, model profiles are corrected to agree with-
observations in

- latitude-integrated flux

- centroid latitude

- width of auroral zone
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MSFM Precipitating Electron Fluxes
How Good Are They?
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Sample comparisons of precipitating electron flux from MSPM
compared with observations and with Hardy model.
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Sample Results of MSFM Post-Corrections to
Precipitating Fluxes in 5-15 keV Channel
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Sample Results of MSFM Post-Corrections to
Precipitating Fluxes in Various Energy

Channels
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Uncorrected MSFM

frequently underestimates
flux in lowest channel

(100-500 eV), probably
because model does not

include secondary
electrons. Correction

helps.

Correction procedure
worked well in5-15keV

channel in this case, even
though correction was
large.
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MSFM Precipitating Fluxes: Discussion

Strong Points

- Conservative algorithm that gives sensible values

- MSFM fluxes don't have the artificially diffuse structure
that characterize the statistical models

- MSFM tries to align the equatorward precipitation
boundary with the equatorward edge of the auroral flow.

Weak Points

- Field-aligned potential drops are not included.

- Misses most detailed structure

Possibilities for Improvement
- Systematic contests between different empirical models

would be helpful.

- Develop an algorithm that adjusts the pattern to fit real-time
auroral images.

- Global 3D MHD model?

- Understand the aurora better.
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Portrait of Ring-Current Injection-
Model Inputs for Idealized Storm
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Portrait of Ring-Current Injection-
Equatorial Plots of MSFM Results
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Comparison with Observed 40-keV
Geosynchronous Electrons

o-Jy««aY electrons
238 00 238 25

j elecifoiis
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Comparison ofMSFM predictions with electron fluxes observed by the Los
Alamos MPA detector, for August 26, 1990. Data courtesy of D. McComas.
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Comparisonof MSFM predictions with electron fluxes observedby the
CRRES LEPA detector in the August 1990 storm. Datacourtesy of D. Hardy.
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Plasmasphere Simulation - Input Data
a b c e f g h

tS .100

Day of Year

SSC

MSFM Input Datafor February 19-21,1992. From L. A. Weiss, R. L.
Lambour, R. C. Elphic, and M. F. Thomsen, "Study ofPlasmaspheric
Evolution Using Geosjnichronous Observations and Global Modeling,
Submitted to JGR, 1996.
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Plasmasphere Simulation - Equatorial Plots
of MSFM Electron Density
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From L.. A Weiss. R ! . Lambour, R- C. Elphic, and M. F. Phomsen, "Study
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Comparison of MSFM with
Observed Densities
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From L. A. Weiss, R. L. Lambour, R. C. Elphic, and M. F. Thomsen, "Study
of Plasmaspheric Evolution Using Geosynchronous Observations and Global
Modeling, Submitted to JGR, 1996.
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Future Possibilities

The index approach:

- Use more indices and more statistical studies to represent
more physical parameters

The comprehensive-model approach:
- Use different computational approaches in different _

regions:
• To make models more comprehensive, need to use different

algorithms in different regions.

- Examples: Embed the RCM inside the Lyon-Fedder
global-MHD code, merge RCM with Bim-Hesse tail-
MHD code.

- Integrated Space Model. Sponsored by Defense Nuclear
Agency

- Hybrid codes, full particle codes.
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Integrated Space Model (ISM) - Team

Defense Nuclear Agency (Sponsor)
- K. Schwartz / RAEM

- R.COX/SPWE

Mission Research Corporation (Prime Contractor)
- M. From

- G. Fry

- A. Gregersen

- N. Maynard

- K, Siebert

- W. White (Principal Investigator)

Dartmouth College
- B. Sonnerup

Rice University
- C. Ding

- J. Freeman

- S.Orloff

- R. Spiro

- R. Wolf

Bartol Research Institute (Univ. of Delaware)
- D. Pontius

Consultants

- G. Erickson (Boston Univ.)

- G. Siscoe (Boston Univ.)
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Integrated Space Model -
Overall Flow Diagram
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Integrated Space Model -
Central Two-Fluid MHD Model

—VY

Ion Species

Ion Hydro
/ Fluid \ Forces
I Transport j

^ k

g

\^V(Pion + Pelec)/

JxB Vion

T i
\

B,J

T
Maxwell's

Equations
Solver

CEDAR Tutorial 6/21/96

Ohm's Law

N

Chemistry &

Heat Transfer

lonization

Recombination

Neutral-Neutral

Pneutral

Neutral Species
Tneutral

TN2

Ion-Neutral

Frictional

Heating

Collisional

Coupling

Ion-Neutral

y^harge Exchang^

Neutral Hydro

Forces

g

V(Pneutral)

Vneutral

Fluid

Transport

49



Integrated Space Model - Sample Results

Evolution ofInner Region Parallel Currents and Field Line Topology

20 min 25 min 30 min

i i

Results of test of ISM with composite grids, one beyond 3.5 and
one from 100 km to 3.5
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Concluding Comments

MSM is in operational use at the 50th Weather Squadron.

MSFM will be transitioned starting in a few months.

These models are partly data-driven, part theoretical
calculation..

Cover region from inner magnetosphere out through
inner plasma sheet.

They do a reasonable job of providing
- Magnetospheric particle fluxes up to ~ 100 keV

- Global E and B models

but they are not highly accurate.

MSFM provides reasonable high-latitude ionospheric
electric fields and precipitation patterns

- Other models may do a better job of specifying and/or
forecasting ionospheric inputs at high latitudes:

• AIMIE, IZMEM, Weimer

• Toffoletto-Hm, 3D Global MHD

- We really need a comprehensive, organized test

MSFM also provides a reasonable estimate of the
prompt-penetration E-field at low latitudes

- Wind-driven fields need to be added

- More research is badly needed

More advanced and comprehensive models are coming...
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