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''^Space WmtheF' refers to conditions on
the sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can
influence the performance and reliability of
space-borne and ground-based technologica,
systems and endanger human life and health.
Adverse conditions in the space environment
can cause disruption of satellite operations,
communications, navigation, and electric
power grids, leading to a panoply of socio
economic losses.

- National Space Weather Program
Strategic Plan (March 1995)



EFFECTS OF SOIAR-TERRESTRIAL DISTURBANCES

Astronauts can be exposed to serious radi
ation hazard during major solar activity.

Power grids overload during large
geomagnetic storms.

Electronic navigation can be in error due to
shifting of radio waves

022(010100:

Satellites are "aged" and tend to fall to Earth
prematurely. Their electronics also can be
damaged.

Radio waves that bounce off the atmo

sphere go astray.

Measurements from magnetic and electncal
surveys often are irKxsrrect during geomag
netic storms.



Single Event Upset Mechanism
Direct lonization

ion track

Vx"?&:si;iSWNV'

sensitive region

Charge collected in this
region during particle
transist can trigger a
change of state of the
memory

induced lonization along the
particle track

Figure 1-6. Directlonization SEU. Sensitive region is typically the depletioo region,
although chargecan be coUected a consideiable distancefirom thedq)letion region.
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Origin of Anomaious Cosmic Rays
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SOLAR-TERRESTRIAL ENVIRONMENT - Mtrch 1991
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A DOUBLE-PEAKED INIVER RADIATION BELT:

CAUSE AND EFFECT AS SEEN ON CRRES

E.G. Mullen, M.S. Gussenhoven, K. Ray and M. Violet
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Figure 5
SHU frequency in SEUs/Bit-Day for 35 proton sensitive devices for the first
585 orbits (July 25, 1990 to March 22, 1991) of the CRRES mission as a
ftinction of L-shell in Earth Radii. The peak at an L-value of 1.5 coincides
with the heart of the inner radiation belt.
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Figure 6
SEU frequency in SEUs/Bit-Day for 35 proton sensitive devices for the 141
orbits (March 29,1991 to May 25, 1991) following the solar protonevent of
March 1991. The double belt proton structure is clearly evident in the
double-peaked SEU frequency. The dropouts at higher L-values are due to
poor statistics.
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ENERGETIC ION RADIATION

DAMAGE IN SPACE

Trapped (Van Allen^ Ions

• Peak Flux : J (> 10 MeV) ~ 3 x 10^ p/cm^-s
• Persistently present
• J ^ 1 cm'^-s'^ for r ^18000 km

Galactic Cosmic Ravs (GCR't

• Composition : p, a, CNO, Z > 20
• "Anomalous" Component
• Kinetic Energy : 0.01-10 GeV/n
• Strong 11-year Solar Cycle Modulation
• J (E > 100 MeV) ~ 1 p/cm^-s

Solar Energetic Particles (SEPt

• Kinetic Energy : 10 keV/n ~ 300 MeV/n
• Source : Solar Flares and Shocks

• Highest Occurrence at Sunspot Max
• J (E > 10 MeV) ~ 100 p/cm^-s
• Duration : 1-7 days



Compression of the Magnetosphere
during a Severe Geomagnetic Storm

Solar Wind Li GOES £arth Magnetotail and current sheet
satdlite satellite —

Space
Environment
Laboratory



GOSLING ET AL.: GBOMAGNEHC ACnVITY, SHOCKS, AND CMES

Major Storms (14)

CMEs Only
Shocks & CMEs

Shocks Only
• Neither

Medium Storms (84)

SHOCK

«

Large Storms (23)

Smaii Storms (206)
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Baker et al. (1987)
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penetrating radiation

B

Sensitive Component

Charge buried in insulator
can discharge

Spacecraft

^Electronics box

Floating circuit trace
can collect charge
and discharge

Figure M. Internal Discharges ResuU From Charges Deposited Directly On or In
Weil Insulated Regions Inside the Spacecraft
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High-tech chaos as satellites spin out of control
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OTTAWA — Telesal Canada was
facing some tough questions today
as it tries to explain how its two
main communication satellites
tumbled out of control, inlerrupt-
ing TV, radio, newspaper and tele
phonesignals across the country.

After struggling for more than
eight hours lo bring the wobbly
Anik E-1 under control, Telesal
technicians thought they had Ihe
problem licked late yesterday.

The were only half right.
Shortly after 9 p.m. EST, as

Anik E-1 settled back into position,
Telesat's primary broadcasting sa
tellite, Anik E-2. also got a bad case
of the shakes.

CBC Newsworld and other na
tional specialty cable channels, in
cluding MuchMusic, TSN, Vision
and the Weather Channel, were
knocked off the air. Partial service,
with signals carried by fibre-optic
cable, was later restored in some
major centres, including Toronto.

In Hamilton local cable com
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were unaffected. The Mt. Hope
weather office had minor disrup
tions.
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space plasma is
neutral

(Net current across any.
sur&ce is zerp) : ;:; v :

lasma

sheath fonnaiion

charge neutrality
notpreserved

_ inside sheath

•Spacecraft. I

ihnisier>

plume ii

surface interactions

photoemission

incident particle
Surface currents

Backscanered

secondary particles

Figure 1-2. Surface Discharges Result From Charge Built Up on the Surfaceof theSpacecraft-
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THE SUBSTORM ENERGY DISSIPATION
SEQUENCE

ENERGETIC
PARTICLE

ACCELERATION

RING CURRENT
INJECTION

SOLAR WIND ENERGY INPUT

STORAGE
CONVECTTVE
DISSIPATION

1 t

EXPLOSIVE DISSIPATION

PLASMA SHEET
HEATING

PLASMOID
FORi\LVTION

JOULE
HEATING

AURORAL

LUMINOSrrY

'UNLOADING PROCESS'

return TO
SOLAR WIND

MAGNETOTAIL IONOSPHERE

SOUTHWARD IMF

"DRIVEN PROCESS"

(GLOBAL)

PARTICLE

PRECIPITATION

RADUTION



GEOSPACE ENERGY BUDGETS

ENTRY

Incident Solar Wind 10 ^^-10 ^̂ W
Coupled to Magnetosphere 10^^-10^^

STORAGE

Magnetotail 10^^-10^^ J
Ring Current 10^^-10^^

TRANSPORT AND LOSS

Ring Current Injection 10^^-10^^ W
Ionospheric Joule Heating 10^°-10^^
Auroral Precipitation 10^°-10^^
Auroral Luminosity 10^ -10^®
Auroral Kilometric Rad. 10^ -10^
FLASMOEBS 10^^-10^^

TOTAL POWER

Substorms ~ 5 x lO^^W
Major Storms > 10^^ W



State of the Magnetosphere

A set of global variables which are sufficient for the description of
geomagnetic activity at short time scales.

Magnetospheric State x( t):

Solar Wind Input u( t):

r
Remote Data:

In Situ Data:

B

vP.

AL

AU

PC

v • y

Tps

The magnetospheric state evolves according to

dx

dt
=F(x;u)

Assumption: The variables x are strongly related to each other so one
parameter [e.g., AL(t)] contains adequate information about the state x.
Example of equivalent state:

X =

^ AL(t) ^
AL(t-T)
AL (t - 2T)

V y m>d
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NC5()-Hosaic: Docunent View
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ELECTRON FLUX PREDICTION NETWORK

Input layer Hidderi layer Outpirt layer

iKp

day 0

average

^ electron

flux

day-1

day-2

day-9

Typical Neuron

input 1
input 2

• • •

input n

signed
weighted
sum of

inputs

Activation
Transfer

Function

1
Value

>

>

1+ exp (-A)

output



WIND

Datastream

Propagation
Code

Nonlinear

Prediction

Code

AL, AU indices
PC index

Archived

ecircM '--. [jjcmion

CQds

MSfM

•-SHIVIHD Tail/Substorm
I Module
V y

i To SUN

200 ER

5.15.1995
\

2.22.1995

Lunar

orfoit

/ 6.27.1995

2.1.1995

^ 1.1.1995

-200 ER

Input: WIND VBs

Prediction Output:
* Auroral geomagnetic activity

(AL, AU indices)
* Polar cap geomagnetic activity

(PC index)



GEOMAGNETIC ACTIVITY PREDICTION

Solar Wind

Bx, By, Bz
at Eartii

Magnetosphere
modeling

code

Computation
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Magnetosphere
Electric Field

code

AE. Dst

prediction
code

Ionospheric
convection
^ pattern ,

an

irtorgetic
particle drift

code

Ionospheric
drift

code

/Auroral oval ^
and

Auroral E
X prediction j

AE

prediction

foF2

prediction

Auroral absorption]
prediction J



Relevance to America

Given accurate space weather warnings, system operators could:

satellites

♦ turn off sensitive spacecraft components
♦ increase monitoring of satellite operations for anomalies
♦ calculate best time to adjust a low Earth orbit for drag
♦ delay major changes in vehicle potential from tuming on/off

components

electric power
♦ reduce load on transmission circuits
♦ confidently reset tripped protective relays on power networks
♦ selectively ground capacitor banks to prevent large potential drops
♦ delay power station maintenance and equipment replacement

communications ♦ look for alternate frequencies; planmeans and timing to minimize
communications outages

navigation ♦ delay compass calibration on aircraft inertial navigation systems

surveying ♦ delay high-resolution geological surveying, exploration, orother
research using GPS

♦ delay high-resolution magnetic surveying degraded by geomagnetic
disturbances

radiation ♦ adjust flight altitude on polar routes to minimize health hazard
♦ delayspace walk operations


