Modeling of Gravity Wave and Instability Processes

in the Middle Atmosphere

Dave Fritts

Laboratory for Atmospheric and Space Physics University of Colorado, Boulder, CO

> with colleagues Øyvind Andreassen Steve Arendt Joe Isler Jim Garten Teresa Palmer Mike Gourlay

<u>Outline</u>

- 1. Motivations for MA Instability Studies
- 2. Model Formulation
- 3. Instability due to Wave Breaking
- 4. Kelvin-Helmholtz Instability
- 5. Conclusions

••• • •• •• • • • •

-

Modeling Motivations

- Wave transports of energy and momentum are central to our understanding of middle atmosphere dynamics
- Wave interaction and instability processes account for wave saturation, spectral character, and constraints on energy and momentum fluxes
- Dynamics of transition from laminar to turbulent flow dictates character of turbulence, efficiency of mixing and transports

Geophysical Research Letters

OCTOBER 8, 1993

Volume 20 Number 19

AMERICAN GEOPHYSICAL UNION

Model Formulation

- Solves Euler equations with spectral viscosity
- Employs spectral collocation techniques
 - Fourier in x, y
 - Chebyshev in z
- Uses domain docomposition for higher resolution, greater efficiency
 - wave breaking using two domains
 - forcing in low-resolution lower domain (96, 48, 65)
 - instability in high-resol. upper domain (192, 96, 129)
 - Kelvin-Helmholtz instability using four domains

- Re = 200 to 2000

- 2D initial evolution, 3D instability evolution following noise insertion at finite amplitude
- Boundary and interface conditions
 - periodic in x , y
 - open in z, using upstream characteristics

Wave Breaking Simulations

- high-frequency wave in a shear flow
 - ~ 30 min period
 - ~ 24 km wavelength
 - ~ 1 km instability depth
- wave field evolution

والوالوال والداري المار المحاربين الماليو ويصبحه المعامة الإفرام وترابعا فا

- initial instability is convective, streamwise
- secondary instability is dynamical, spanwise and localized (3D KH)
- evolution is rapid and transient, collapse to turbulence ~ 1 T_b

wave breaking shown with isosurface of O

wave breaking with isosurface of O and of pocitive (red) and negative (blue) streamwise vorticity

Eddy Kinetic Energy Equation

the second s

-

. . . .

.

$$\begin{pmatrix} \frac{\partial}{\partial t} + \hat{\mathbf{u}} \cdot \nabla \end{pmatrix} K_e + \frac{\partial}{\partial x} \langle p' u' \rangle + \frac{\partial}{\partial z} \langle p' w' \rangle \\ \approx -\hat{\rho} \langle u' u'_i \rangle \frac{\partial}{\partial x} \tilde{u}_i - \hat{\rho} \langle u'_i w' \rangle \frac{\partial}{\partial z} \hat{u}_i + \frac{\hat{\rho}g}{\hat{\theta}} \langle \theta' w' \rangle$$

Vorticity Equation

$$\frac{d\omega_i}{dt} \approx \omega_j S_{ij} + \left\{ \frac{\nabla \rho}{\rho} \times \frac{\nabla p}{\rho} \right\}_i$$

where

$$S_{ij} = rac{1}{2}(\partial_i v_j + \partial_j v_i)$$

NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT

Modeling of Breaking Gravity Wave

- Vortices rendered by $\lambda_2 < 0$ of S² + R², viewed from below

NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT

Baroclinic generation of vortices at t=62.5

Vortices

Solenoidal sources

NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT

Vortices at t=67.5, strain source of streamwise vorticity $(\omega_j S_{ij})_1$

Kelvin-Helmholtz Instability

- unstable shear flow in uniform stratification
 - $U(z) = Uo \tanh(z/h)$, Uo = 28 m/s, h = 300 m
 - wavelength $\sim 4 \text{ km}$
 - Ri = $N^2/Uz^2 = 0.05$
 - Re = 200 to 2000
- KH evolutions
 - remain 2D, Re < 200
 - secondary convective instability, Re > 250
 - secondary dynamical instability, Re > 1000
 - secondary instabilities
 - accelerate KH breakdown, restratification
 - mixing and transports are very different in 2D and 3D

Contour of $\theta = 1.035$ for Re =500

Contours of positive (red) and negative streamwise vorticity for Reynolds number = 500

Re = 500 Potential Temperature

.72

÷ +

.72

.

. ..

Re = 500 Spanwise Vorticity

Time = 48

Time = 64

Time = 72

. . . م م

0.

. •

.72

. .

Conclusions

- Wave breaking is inherently three dimensional
 - primary instability is convective in nature over large range of wave frequencies
 - secondary dynamical instability (KH in 3D) arises due to stretching of vortex sheets
 - vorticity dynamics drives transition to turbulence
 - intertwined vortex tubes
 - intense vortex interactions
 - vortex fraying, fragmentation => cascade of energy and enstrophy to smaller scales
- Kelvin-Helmholtz instability exhibits secondary instability
 - convective, streamwise instability, Re > 250
 - dynamical, spanwise aligned inst., Re > 1000
 - 2D and 3D evolutions have very different
 - vorticity dynamics
 - implications for mixing and transports