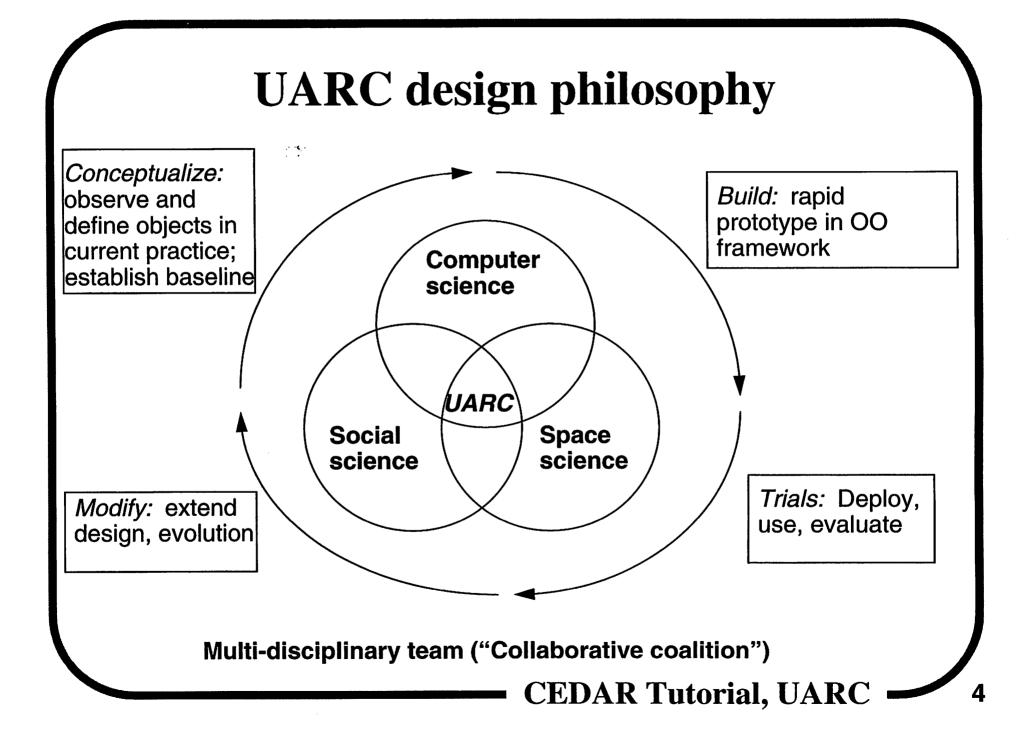
Virtual science: Lessons from the UARC experience

Tom Finholt & Bob Clauer The University of Michigan


CEDAR Tutorial June 23

Outline I. The collaboratory concept II. UARC design philosophy III. Lessons from the UARC experience (so far...) IV. Future directions

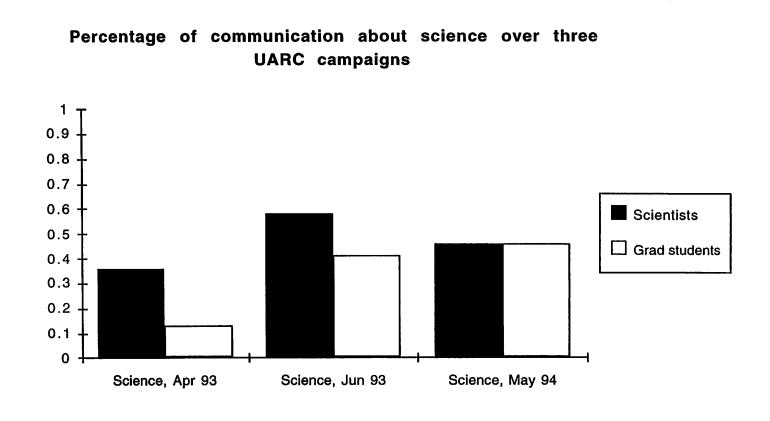
Lessons from the UARC experience

Lesson 1: Collaboration over real-time data is not the most important component of current research practice among space scientists

Mean percent of effort allocated to research activities (n=65)

<u>Activity</u>	Percent of effort
Data reduction	36
Planning	19
Data collection	13
Modeling	12
Theory development	11
Training	10
Instrument development	8

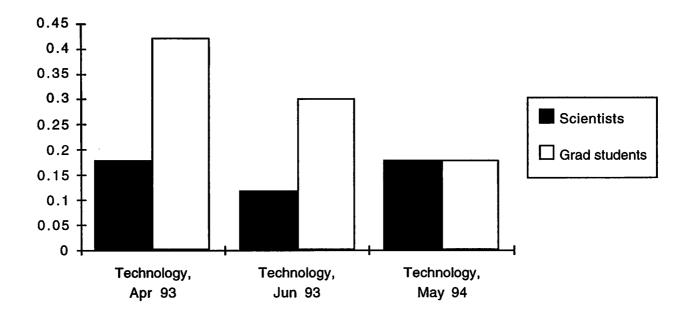
Lesson 2: Multi-user access to multi-instrument platforms is useful Mean percent of data use by data source (n=65)


<u>Data source</u>	Percent of data use
Ground, operator	44
Ground, unattended	38
Spacecraft	32
Other	8

6

Lesson 3: UARC is a powerful educational tool

Proportion of scientist and graduate student communication about science during three campaigns: April, 1993; June, 1993; and May, 1994



CEDAR Tutorial, UARC

Lesson 4: The UARC interface is less obtrusive over time

Proportion of scientist and graduate student communication about UARC technology during three campaigns: April, 1993; June, 1993; and May, 1994

Percentage of communication about UARC technology over three campaigns

CEDAR Tutorial, UARC

8

Lesson 5: Users report that UARC use has positively changed their research practices

Senior scientist -- Watching the observations on UARC adds new features to my work. When you sit there and watch in real-time, you develop your own expectations and predictions, which are then validated or invalidated. When you watch a campaign this way, for some reason, you remember interesting situations better and you can recognize them them easier later on.

Graduate student -- I enjoy talking to Peter [Stauning] on the system. Peter provides answers for me when Bob [Clauer] is unavailable. This is a good way to learn because I can try out an idea and get a response quickly about whether it is good or bad. Also, UARC gives me the chance to learn how to run experiments. It is good to watch Bob [Clauer] run one. Without UARC I doubt that I would have participated in an experiment this early in my graduate career.

Lesson 6: Use of UARC for retrospective, collaborative data analysis is a useful new application

Example -- March, 1994 "replay campaign"

Participants: Peter Stauning in Denmark; Rick Doe in California; Cesar Valledares in Massachusetts; Odile de la Beaujardiere and Bob Robinson in Washington, D.C.; Rick Niciejewski and Craig Rasmussen in Michigan; and Ted Rosenberg in Maryland

Instruments: ISR, IRIS, All-sky imager

Data: PATCHES campaign, February 7 to 9, 1994

Future directions

Planned UARC development (1994 to 1997):

• enhance capabilities for support of retrospective, collaborative science (e.g., Atul Prakash's effort to develop shared windows, pointers, and annotations)

• produce standard interface for adding additional instruments (e.g., effort directed by Terry Weymouth and Craig Rasmussen)

• expand educational use -- perhaps following Mike Kelley's recent classroom demonstrations with UARC

• generalize findings and specifications -- but NOT particular technology -- to other collaborative scientific applications (e.g., evolution of the PCO)