# **CEDAR Tutorial Lecture**

# **Introduction to Computer Networking**

Yadunath Zambre SRI International **Tutorial Lecture** 

**Motivation** 

**Overview of the Internet** 

**Protocol Layering** 

**Networking Hardware Infrastructure** 

**Internet Protocols** 

**Network Performance** 

**Programming Interfaces** 

**Applications** 

**Perspectives from the Community** 

**University of Michigan** 

**MIT – Millstone Hill** 

**University of Alaska** 

EISCAT



Reprinted with permission: Tribune Media Services.



# **NSFnet Backbone**

San Diego, CA

**Boulder**, CO

Champaign, IL

Pittsburgh, PA

Ithaca, NY

Princeton, NJ











# **Protocols**

**TCP/IP – Internet Protocol** 

**DECnet – Digital Equipment Corporation** 

**IPX – Novell Netware** 

**AppleTalk – Apple Computer** 

# **Underlying Hardware Technologies**

Ethernet

FDDI (optical fiber)

**ProNet-10 (token ring)** 

ATM (asynchronous transfer mode)

**X.25** 

Serial line

ISDN

#### Ethernet

10 Mbps broadcast bus with distributed access control

**Carrier sense network with collision detection** 

48 bit integer hardware addresses

Ethernet frames are self identifying, containing receiver and sender addresses and frame type

Allows multiple protocols on a single machine

Allows multiple protocols on a single network

|   |   |   | · · ·         |
|---|---|---|---------------|
|   |   |   |               |
| • |   |   |               |
|   |   |   | <br>•         |
|   |   | • | •             |
| • |   |   |               |
|   | · |   | <br>· · · · · |

| Preamble | Destination<br>Address | Source<br>Address | Packet<br>Type | Data           | CRC     |
|----------|------------------------|-------------------|----------------|----------------|---------|
| 64 bits  | 48 bits                | 48 bits           | 16 bits        | 368-12000 bits | 32 bits |

The format of a frame (packet) as it travels across an Ethernet.







the second s

# Network and Transport Layer Protocols

#### **Conceptual Layering**



--- The conceptual layering of UDP and TCP above IP. TCP provides a reliable stream service, while UDP provides an unreliable datagram delivery service. Application programs access both. **Internet Protocol** 

#### **Connectionless Datagram Delivery**

#### **Unreliable, Best effort transport of datagrams**

#### Hides underlying network (hardware) technologies

Analagous to network hardware

| 0                      | 4   | 8               | 16              | 19 | 24 31 |
|------------------------|-----|-----------------|-----------------|----|-------|
| VERS                   | LEN | TYPE OF SERVICE | TOTAL LENGTH    |    |       |
| IDENT                  |     | FLAGS           | FRAGMENT OFFSET |    |       |
| TI                     | ME  | PROTO           | HEADER CHECKSUM |    |       |
| SOURCE IP ADDRESS      |     |                 |                 |    |       |
| DESTINATION IP ADDRESS |     |                 |                 |    |       |
| OPTIONS PADDING        |     |                 | PADDING         |    |       |
| DATA                   |     |                 |                 |    |       |
| · • • • •              |     |                 |                 |    |       |

•

.

Format of an Internet datagram, the basic unit of transfer on the Internet.

#### **User Datagram Protocol (UDP)**

Unreliable connectionless delivery service

Uses IP

Adds the ability to distinguish among multiple destinations within a single host

Datagrams may arrive out of order or not at all

#### **Reliable Stream Transport (TCP)**

**Connection oriented or virtual circuit service** 

**Stream orientation** 

**Full duplex** 

All data arrives in order. Guarenteed delivery

#### IP header Complete UDP datagram treated as data by IP

A UDP datagram encapsulated in an IP datagram as it travels across the Internet.



.....

The two components of a UDP message. Such messages are called user datagrams.

The format of fields in the UDP datagram header.

| )                      | 8    |             | 16               | 3. |  |
|------------------------|------|-------------|------------------|----|--|
| SOURCE PORT D          |      | DESTI       | DESTINATION PORT |    |  |
|                        |      | SEQUENC     | E NUMBER         |    |  |
| ACKNOWLEDGEMENT NUMBER |      |             |                  |    |  |
| OFF.                   | RES. | CODE        | WINDOW           |    |  |
| CHECKSUM URG           |      | ENT POINTER |                  |    |  |
| OPTIONS                |      |             | PADDING          |    |  |
|                        |      | D           | TA               |    |  |
|                        |      | 8           |                  |    |  |

South and a state of

The format of a TCP segment with a TCP header followed by data. Segments are used to establish connections as well as to carry data and acknowledgements.

~ ~



A protocol using positive acknowledgement with retransmission in which the sender awaits an acknowledgement for each packet sent. Vertical distance down the figure represents increasing time and diagonal lines across the middle represent network packet transmission.



Timeout and retransmission that occurs when a packet is lost. The dotted lines show the time that would be taken by the transmission of a packet and its acknowledgement, if the packet were not lost.



An example of three packets transmitted using a sliding window protocol. The key concept is that the sender can transmit all packets in the window without waiting for an acknowledgement.

# Performance

#### Bandwidth

Actual throughput is seldom equal to the ideal bandwidth due to network congestion and packet loss

Latency/Delay

Important for real time applications such as conferencing

ping measures round trip delay

traceroute measures delays along a packet route







# **Programming Interfaces**

**Transport Level** 

**BSD Sockets** 

**Client/Server architectures** 

**Session and Presentation Level** 

**Remote Procedure Calls** 

**XDR** (external data representation)

**Application/Higher Level** 

**Distributed Object Systems** 





The client sends out a request over the network. The service daemon is constantly listening for requests. When a request is received, it invokes the service. The appropriate procedure is dispatched. The request is executed and the reply is returned over the network to the client.

The client machine is inactive between the time of the request and when it receives a reply.

The client and server machines may be the same.



OSI Layers

1



| Language Dev<br>Pro                                   | velopment<br>grammers | Maintenance<br>Programmers | Total<br>Programmers |
|-------------------------------------------------------|-----------------------|----------------------------|----------------------|
| Cobol                                                 | 190,000               | 390,000                    | 580,000              |
| Object-Oriented: C++,<br>Objective C, Smalltalk, etc. | 135,000               | 30,000                     | 165 000              |
| С                                                     | 132,000               | 77,000                     | 209,000              |
| Database/query<br>languages                           | 110,000               | 75,000                     | 185,000              |
| Fourth-generation<br>languages/generators             | 110.000               | 75,000                     | 175,000              |
| All other languages                                   | 240,000               | 254,500                    | 504,500              |
| Totals                                                | 917.000               | 901,500                    | 1,818,500            |

#### **Application Level Services**

FTP (file transfer protocol)

**Telnet – remote login capability** 

**Electronic Mail** 

Gopher

Archie

Veronica (Very Easy Rodent-oriented Net-wide Index to Computerized Archives)

World Wide Web – Mosaic

# **New Applications**

Telescience

Remote viewing of data

**Remote control of an instrument** 

**Collaboration Technology** 

**Application Sharing** 

Sharing of data views amongst many parties

Sharing control of an application amongst many parties

**Application Synchronization amongst many parties** 

Conferencing

**Text Based** 

Audio

Video

# **MBone (Multicast Backbone)**

Virtual network layered on portions of the physical internet

**Provides the ability to send identical packets to multiple destinations simultaneously** 

Multicast kernel currently available on SGI, Sun computers

Production routers currently lack multicast ability.

**MBone applications include** 

- nv network video tool
- vat visual audio tool for multi-party audio conferencing





#### **Standards**

**Network Protocols** 

**TCP/IP – available on all machines** 

**DECnet – available on DEC computers** 

IPX/SPX – available on IBM compatible PCs and many unix systems

**AppleTalk – available on Apple computers** 

**Remote Procedure Call (RPC)** 

ONC RPC – Sun Microsystems Open Network Computing group

**OSF DCE – Open Software Foundation Distributed Computing Environment** 

**TIRPC – transport independent RPC** 

**Distributed Object Systems** 

**CORBA – common object request broker architecture** 

NeXTStep

Taligent

**Microsoft – Project Cairo (Windows NT)** 

#### References

#### **Power Programming with RPC,** John Bloomer, O'Reilly & Associates

**Internetworking with TCP/IP**, Volumes I, II, III Douglas Comer and David Stevens, Prentice Hall

<u>Connecting to the Internet</u>, Susan Estrada, O'Reilly & Associates