1993 CEDAR Workshop Tutorial NIST Auditorium, Boulder, CO Wednesday, June 23, 1993

Atmospheric Gravity Wave Effects on the Climate, Dynamics and Composition of The Upper Mesosphere and Lower Thermosphere (MLT)

> Richard Walterscheid The Aerospace Corporation

Topics

Review of Gravity Waves

Wave-mean-flow interactions

Theory

Wave transports

Nonacceleration theorem

Chemically induced interactions

Phenomena

Cold Summer Mesopause

Pseudotides

Compositional changes

....

Fig. 8.2 The propagation of a surface gravity wave initiated by a depression at time t_0 .

Pl.199 A stratiform deck of clouds affected by a strong wind that is producing waves similar to those often seen on water. A band of higher clouds shows that the wind effects are widespread.

SPECIAL SECTION: NOCTILUCENT CLOUDS

tmo-'GR-0771 stem phy, side trine 254,

GU iose iular ot of two : for

GR inal tion hat for 's.

Гhe nay

rerk, nal ing vaide ital ital tal ed

cal

ial

tu-

215

38.

ce

or

as

of

eir treed in the see us y. or we er n

г I S

Believed to consist of ice particles of dimensions less than 0.1 μ m, noctilucent clouds offer a splendid summertime light show to northern inhabitants. During the long summer twilights these high-altitude (85 km) clouds are visible by direct solar illumination, while the lower atmosphere is in shadow. The cloud color is generally silvery-blue, primarily due to the Rayleighlike scattering properties of the tiny particles, and secondarily due to partial removal of red light from absorption in the Chappuis bands of ozone. The characteristic wave forms are probably a result of viewing perspective, a geometrical consequence of the wave undulation of a thin homogeneous cloud layer. However, at times, clouds can sometimes be viewed directly overhead where this effect should not be present, indicating that divergence/convergence of ice particle concentrations may also be partially responsible. This photograph was taken by Pekka Parviainen at Kustavi, Finland (latitude 60.7°N, longitude 21.3°E). It was taken on the night of July 13, 1983, at 2140 UT (about 2300 local time). Camera details: f/2 50-mm lens, Kodachrome K64 film, exposure time unknown.

Atmospheric Internal Gravity Waves

Recall: Tilted surface in a stratified fluid \rightarrow horizontal pressure gradient

In a continuously stratified fluid a wave disturbance in one layer tilts adjacent layers and excites traveling disturbances which tilt layers adjacent to them and so on

Waves may be external or internal

External: Maximum energy density at a boundary

Evanescent

Internal: Maximum energy density within the fluid

Vertically propagating (usually)

Phase propagation is opposite to vertical group (i.e. energy) propagation

Amplitude $\propto \overline{\rho}^{-1/2}$ for steady conservative waves

Internal waves dominant in MLT because they are vertically propagating and grow in amplitude

C.PL23 Drack of a Vienneman Missile launched from Vasclenberg er F.Burstoon from Positiona, Calif. Such conclensation brails show the support of an 2 to the stear, and the bulence in the high atmosphere.

Wave Mean State Interactions

Wave Fluxes

÷

Wave Forcing of the Mean State

Nonacceleration theorem

Chemically induced forcing

Wave Mean State Interaction Phenomena in the Upper Mesosphere and Lower Thermosphere

Cold summer mesopause

Pseudotides

Compositional changes

Nonacceleration Conditions

Waves

Linear

Conservative

Steady

No critical level $(\overline{u} \neq c)$

Wave Fluxes

Mean state changes induced by wave fluxes

$$\frac{\partial \overline{\Psi}}{\partial t} = \dots - \frac{1}{\overline{\rho}} \frac{\partial F_z(\Psi)}{\partial z}$$

$$F_z(\psi) = \overline{\rho} \overline{w' \psi'}$$

Wave stress

 $\Psi = u$

Sensible heat flux

:

$$\psi = c_p T$$

Species flux

 $\psi = r, \psi = n$

Vertical Wave Fluxes

÷

(

Forcing of Mean Wind by Momentum Flux

Wave Drag Effects on the Mesospheric General Circulation

Ċ

FIG. 3. Derived radiative equilibrium temperature distribution at solstice. Winter hemisphere on right.

11

Thermal Wind Relation

In geostrophic balance

$$f\frac{\partial \overline{u}}{\partial p} = \frac{R}{p} \left(\frac{\partial \overline{T}}{\partial y}\right)_{p}$$

In words:

Westerly shear \Rightarrow temperature decreases poleward

.: .:

::

Fig. 4. As in Fig. 1, but for the June-August period.

. . .

C

Cold Summer Mesopause

Cold summer mesopause is caused by deceleration of summertime easterlies due to wave drag

Drag Mechanisms

Wave breakdown Viscous dissipation

:

Wave transience

Pseudotides

Tides: Periodic response to periodic external forcing by astronomical agency

Pseudotides: Tidal frequency oscillations forced internally by tidally modulated gravity wave mean flow interactions

Viscous absorption near critical levels (Walterscheid, 1981)

Wave breakdown (Fritts and Vincent, 1987)

• •

Tidally Modulated Gravity Wave Mean Flow Interactions

Fritts and Vincent (1987)

Observed correlation between momentum fluxes and tidal winds

Proposed that gravity waves dissipate via wave breakdown

Lu and Fritts (1992)

Used momentum flux parameterization based on linear saturation theory

Simulated large wave-induced tidal period oscillation

Forbes et al. (1991)

Examined nonlocal effects

Used saturation parameterization in tidal model and inferred deceleration of global tidal modes

Chemical Forcing of Mean-State Minor Constituent Profiles

Vertical flux of constituent mixing ratio is zero when nonacceleration conditions apply and chemical production and loss are nil

Vertical flux can be induced by chemistry even when nonacceleration conditions apply

Strobel (1981) parameterized effects of chemistry in terms of eddy diffusion coefficient

Schoeberl et al. (1983) modified Strobel's parametization to incorporate turbulent mixing (Lindzen, 1981; Garcia and Solomon, 1985, Bjarnason et al., 1987; LeTexier et al., 1987)

Walterscheid and Schubert (1989) used five-reaction model of wave-perturbed O₃ chemistry near the mesopause to calculate chemically induced wave fluxes of minor constituents

OH

Conclusions

Gravity wave drag is the probable cause of the cold summer mesopause

Tidal modulation of gravity wave induced winds may generate strong mean winds with tidal frequency in the upper mesosphere and lower thermosphere

Gravity wave induced fluxes of chemically reacting species can alter concentrations on time scales comparable to chemical lifetimes in the mesopause region, and can be comparable to fluxes attributed to small-scale turbulence