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TIME SERIES

CONTINUOUS DISCRETE

DETERMINISTIC

If future values of a time

series are determined by a
formula or perscription it
is said to be deterministic.

Non-probabilistic, gen
erally properties can be
computed analytically!

RANDOM

Stationary Non-
Stationary

Generally described by mean,
variance, and Autocorrelation
or Spectral Density Function.



A. DETERMINISTIC SIGNALS

1. PERIODIC SIGNALS: Fourier Series - relation

between a continuous periodic time function and a
discrete frequency representation.(LINE SPECTRA)

For a continuous periodic time signal with
period T the complex form of the Fourier series is
usually expressed as:

+00

So (t) =E

where fg = 1/T and

2

—CO

-j2'Kkfot

Cjt=j" Sg{t)e
2

The Cj^'8 are, in general, complex and can be
thought of as the line amplitude spectrum for X5(t).
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Periodic train of rectangular pulses of
amplitude A, duration T, and period To.
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Discrete Spectrum ofa periodic train of rectangular pulses for a duty
cycle T/To = 02. (a) Amplitude spectrum, (b) Phase spectrum.
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Parseval's Theorem gives the total power as

T

2

= Y,
<r -<»T

2

Thus, we could call
Density.

the Power Spectral

2. NON-PERIODIC SIGNALS;
In this case the continuous Fourier Transform

relates the time signal and its frequency
representation.

S^if) = dt

and

8jt) =

Sc(f) is in general complex and for real signals has
a real part that is an even function and an
imaginary part that is an odd function.
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Parseval's Theorem gives the total power as

atT

2

- = ±
tp -ooT

2

Thus, we could call c,, ^ the Power Spectral
Density.

2. NON-PERIODIC SIGNALS:
In this case the continuous Fourier Transform

relates the time signal and its frequency
representation.

S^(f) = f3^(t) dt

and

+»

s^it) = df

So(f) is in general complex and for real signals has
a real part that is an even function and an
imaginary part that is an odd function.
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7
WARNING — WARNING — WARNING -- WARNING

The Fourier Transform equations may be defined
differently by different authors. Some common
definitions are:

or

or

S^{f) = j8^{t) dt

8^{t) = df

Fijiit) = dt

00

6^"*= da

a

Fija) = ff( t) dt
^2ic •'

f(t) = da
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(a) Rectangular pulse.C£>) Amplitude spectrum.
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Properties of the Fourier Tranform:

a. Convolution

Sl(t)

OD

S3 (t) =j(t) ^2 (t-T) dx fiTj if) fifg
—00

b. Rayleigh's Energy Theorem

= f\8„it)\'' dt = f\Sjf)\'' df
—00

and the Energy over a frequency range 0 to Af

A£

E = f |£r^(f) p df
-Af

so: S„(f) looks like an

Energy Spectral Density.
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CORRELATION

J2u,y(T) = Vg{t-X) dt
—CO

for energy signals, and

A

JT
2

for Power Signals.

If u = V

u >£ V
autocorrelation
crosscorrelation

By expressing correlation as a convolution one
can show that

So:

12. (t)

sjt)

/)C ^

12. (t)

S^kf)

Sjf)
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RELATIONSHIP BETWEEN FOURIER

SERIES AND FOURIER TRANSFORM

If s_(t) = one period of s_(t) then

^_\ 12
I

OJt=-« lPo«=-~ ®

or

I-««(«

Thus, under the stated conditions, to within a
constant, the Fourier Series complex coefficients
represent samples of the Fourier Transform at
f = k / T„ .



B. RANDOM SIGNALS

Each particular random signal is assximed to be
one of an ensemble of sample signals.

If one treats each sample signal as a
deterministic signal, a computed Fourier Transform
or Power Spectrum is not a very good estimate of
the 'real' Transform or Spectrum of the statistical
process 1197

♦ • • •

However, for a stationary random ergodic process
the autocorrelation function is a deterministic
function and can be found by

2

jRjj(T) = j*x{t-x) xit) dt

Variance of R^^ix) - 0 as r- «»

Called an unbiased estimate. Then

(i.e., the Autocorrelation function of the
random process X and the Power Spectral density
function of the process are Fourier Transform
pairs.)

u.
1



C. DISCRETE TIME SIGNALS

1. PERIODIC SIGNALS: We now deal with the
Discrete Fourier Series (DFS). For a discrete time
signal with period T we have

*[j2At] = ^ T=NLt
" k=o "

X[^] = X;x[j2At]e ^
™ n=0

sometimes the definition

-i(—) -J2v^a A.tWjf=e * is used, then e ' =f^

NOTE THAT:

A DISCRETE and PERIODIC function in TIME —
results in -- A DISCRETE and PERIODIC function in
FREQUENCY

2. NON-PERIODIC DISCRETE TIME SIGNALS: We now

have the Discrete Time Fourier Transform (DTFT)

00

Zif) = 5^
j2=-aa ZA Ck

Is.
2

x(iiAt) =At f df

X(f) will be CONTINUOUS and PERIODIC in f^ = 1/Zit
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3 . FINITE-DURATION DISCRETE TIME SIGNALS: Here
we define the Discrete Fourier Transform (DFT) as
the first N terms of the Discrete Fourier Series
Coefficients X[k/T] or

xl^] =
" a=0

xCnAfc] = ^ 0 £ n ^ N-1

or for At = 1 and dropping the 1/T in the
frequency index the DFT is normally written as

IT-l

Xik] = j;x[n]wf
ja=0

HT-l
r-kn

•™ Jk=0

So the DFT samples the DTFT at N points in
frequency 1/T apart over the frequency range

or

fa j:

Xik] = X{f)
T



Anti-aliasing Continuous-to-
dlscrete-time

conversion
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FourierAnalysis of Signals Using the DFT
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Zf

LOOKING BACK OVER WHAT WE HAVE TALKED ABOUT ONE CAN

SEE OR DERIVE THE FOLLOWING RESULTS

x[Jt] = ircs. = x(f) k = -7-^Sg{f) jk where T = NAt
At

NOW, WHAT ABOUT POWER OR ENERGY SPECTRA?

FOR A CONTINUOUS PERIODIC SIGNAL --

THE MAGNITUDE SQUARED FOURIER SERIES COEFFICIENT
COULD BE VIEWED AS A LINE (OR DISCRETE) POWER
SPECTRUM. SO

P{f) \.k = \cj^^ can be approximated by \z[k] 2

FOR A CONTINUOUS TIME-LIMITED SIGNAL --

THE MAGNITUDE SQUARED CONTINUOUS FOURIER
TRANSFORM TURNED OUT TO BE THE ENERGY DENSITY

SPECTRUM. SO

SIf Af

or

I where again Af = —= ——
T NAt



2i

THUS, THE PERIODOGRAM, WHICH REPRESENTS SAMPLES
OF THE POWER SPECTRAL DENSITY TREATED AS A

CONTINUOUS FUNCTION AND WHERE THE AREA UNDER THE

FUNCTON IS THE POWER IS GIVEN BY:

P(£J =
NU

jr[A] 2

U is shown here as a correction for the type of
window used. It is one for the Rectangular Window.
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Gaussian Random Data g'̂ 25
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