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1. INTRODUCTION

Atmospheric tides are global-scale oscillations in temperature, wind, density, and pres-
sure at periods which are subharmonics of a solar or lunar day. Strictly spea.ki'ng, atmo-
spheric tides may be either eastward- or westward propagating, but by far the largest
components are those which are westward-propagating or migrating with the apparent
motion of the sun or moon. Planetary waves are longer-period global oscillations which
are either stationary (i.e., fixed to the earth) or zonally-propagating in either direction.
Without intending to diminish thé importance of the other wave components, in the inter- |
est of brevity the present tutorial will mainly concentrate on westward-propagating solar

tides and planetary waves.

A brief view of typical observations provides adequate motivation for the present tuto-
rial. Figure 1 illustrates height/local time contours representing average meridional wind
patterns between 80 and 100 km over Townsville, Australia (19°S, 147°E) and Saskatoon,
Canada (54°N, 107°W) during the period March 18-27, 1979. Note first of all that the
character is mainly diurnal over Townsville (24-hour harmonic dominates), and mainly
semidiurnal over Saskatoon (12-hour harmonic dominates). Why do you suppose this is?
Why is it that phase progression is downward (i.e., the wind contours tilt to the left in
Figﬁre 1)? And, given that there are no significant heat sources at these heights, why is
it that these “tidal” oscillations assume such a prominent role ~in the meteorology of the

mesosphere and lower thermosphere?

Instead of the average local time (day/night) wind structure examined in Figure 1,
now suppose tﬂat we compute the daily mean wind (24-hour average) each day at a single' '
height and form a time series of the daily values. The spectral density curve corresponding
to da.ily mean winds measured over Obninsk, Russia (54°N, 38°E) during January through
February, 1979, are illustrated in Figure 2. Note that prominent peaks occur near §, 9,
and 16 days period; a simple band-pass/IFT analysis demonstrates that these peaks each

correspond to some 5-10 ms™? oscillation in the wind, a substantial fraction of the total
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wind at any given time. Assuming this example is representative, why is it that the spectra.l

peaks should fall at these specific periods?

Perhaps the most well-known long-period oscillation is the so-called two-day wave.
A history of 2-day wave amplitudes determined from mesopause winds me;sured over
Adelaide, Australia (35°S, 138°E) is illustrated in Figure 3 [Harris, 1993]. Note that
amplitudes of order 20-40 ms™? episodically occur. Why should a pro.minent oscillation at

this period exist near the mesopause?

This tutorial is motivated by the simple fact that tidal and planetary waves often
dominate the meteorology of the atmospheric region between 80 and 150 km. Students and
scientists engaged in studies of this regime should have some rudimentary understanding
of the origins, characteristics, and governing mechanisms pertinent to these oscillations.

The present tutorial seeks to impart this basic understanding.

Given that the present work is a tutorial rather than a comprehensive review of re-
search in the field, I have not provided extensive referencing to the huge body of published
literature on tidal and planetary waves. Some exceptions are works of historical impor-
tance, or recent papers which are particularly illustrative or instructive. For more extensive
expositions than provided here, including references to the literature, the reader is referred
to Chapma.n‘a.nd Lindzen [1970] and Forbes [1982 a,b] for solar and lunar atmospheric
tides, and to Walterscheid [1980] and Salby [1984] for traveling planetary waves. There
also exists an extensive literature on stationary planetary waves. A recent paper which
emphasizes the vertical extension of stationary planetary waves into the mesosphere/lower

thermosphere is Pogorel’tsev and Sukhanova [1993].

In the following section, the mathematics governing free and forced oscillations in a
horizontally stratified isothermal atmosphere is developed. The resulting analytic solutions
provide a reference framework for interpreting observations and numerical simulations.
Anticipated modifications to this simple theory due to non-isothermality, mean winds, and

dissipation are also discussed. Thermal forcing of atmospheric tides is covered in Section
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3. In Section 4 several examples of numerical simulations of tidal and planetary waves
are presented and interpreted. A brief outlook of potentially fruitful areas of research is

provided in Section 5.



2. MATHEMATICAL BASIS

2.1 Governing Equations

- In the absence of mean winds, the linearized equations for atmospheric perturbations

on a sphere are.[Holton, 1975):

Su . 1 8% .
E—Zﬂsxnﬁv+ma——0 (1)
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u = eastward velocity z = —Hlin(p/p,)
v = northward velocity A = longitude
$® = geopotential 6 = latitude
w = dz/dt t = time
N? = buoyancy frequency k=Rfc, =2
squared J = heating per unit mass
2 = angular velocity a = radius of earth
of earth
po = basic state density H = constant scale height

We will now follow the spirit of the development in Holton [1975], although some normaliza-
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tion factors will differ. Assume the perturbations to consist of longitudinally propagating

waves of zonal wavenumber s and frequency o:

{u,v,®} = {4, b, ®}exp[i(sA ~ ot)] (5)

This (sA — ot) form for the phase is chosen so that positive values for o correspond to east-
ward propagating waves and negative values to westward propagating waves (i.e., the real
part of (5) is cos(sA — ot) and the crest of the wave occurs where A = ot/s). Substituting
(5) into (1) - (4) eliminates derivatives with respect to ¢ and A, pemittiﬁg consolidation
into a single second-order partial differential equation for ® in z and 8. Separable solutions

of the following form exist where {©p,}a1 n i5 2 complete orthogonal set:

& =3 0.(6)Ga(2) | | (6)

J=3 " 0a(8)Jn(2) (7)

i = s;a S Ua(0)Ga(z) (8)

. —io '

b= 1o Y Va(6)Gn(2) (9)

where |
1 8 sinf d
Un= (F—s?d) st ¥ 7 @o" (10)
1 tanf d
Y= (f? —sin®6) 8 ;n * 3% (v
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The condition for separability is as follows:

10, p 1 8 ,pokdn '
[p 8z Nz)az o]+ p.,a (HNZ) hn (12)

where h, arises as the separation constant. Defining G! = G,,pl/ 2N-1 assuming an
isothermal atmosphere for which N? = 3} where H = constant = 7.5 km (corresponding
to To = 256K), and letting z = z/H, results in the vertical structure equation (for an

isothermal atmosphere):

G, cH 1, ﬁ:lﬂ
d.xz +[E—Z]Gn ZUN d (po'cjn) (13)

The 6-dependent part of the solution is embodied in Laplace’s tidal equation [Laplace,
1799, 1825):

4, (1-p? dO, s (f? +4) s o =
S )~ ol (et Toplen @ =0 ()

where ¢ = sinf and e, = (2Qa)?/gh,. We will now examine solutions to the vertical

structure equation and Laplace’s tidal equation. Note that they are linked through hy,
which is referred to as the “equivalent depth”. This nomenclature originates from the first
appearance of equation (14) in connection with the ocean tide problem where h is the

ocean depth [La.place, 1799, 1825; Taylor, 1936).

2.2 Vertical Structure Equation: Forced and Free Solutions

Rewriting (13) as follows

&G,

- oGl = F(z) (15)

where a? = -',‘f— — 1, the form of the solution is

Gl ~ Ae'** 4 Be~ioz (16)
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Now we will examine the cases where F(z) # 0 (“forced” solution) and where F(z) =0
(“free” solution). When F'(z) # O there are two possibilities. If b, < 0 or hy, > 4xH, then

a? < 0 and

Gl ~ elele (17)

above the source region for a bounded solution. In this case the solutions are referred to
as “evanescent” or “trapped” since the wave oscillations are more or less confined to the
region of excitation. If 0 < h, < 4xH, then a? > 0 and a “radiation condition” (Cyz > 0)

at z = oo implies

Gl ~etiele | (18)

where (+ , -) corresponds to (westward , eastward) propagating waves (see Section 2.4).
This is the so-called propagating solution, where the wave propagates away from the source

region.

When F(z) = 0 the‘only nontrivial solution satisfying boundedness and w = 0 at

z=0is:

G, ~ elx-1)= (19)

and

CBp= (20)

where h, = 10.5 km for H = 7.5 km. This free (unforced) solution corresponds to a

resonant response of the atmosphere. Note that the above solution implies

u~ e | (21)
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corresponding to energy decay away from the surface (pﬁ’) while horizontal velocity and
‘other wave fields increase exponentially (by a factor of 40 from the surface to 100 km).
These waves are sometimes called “Lamb” or “edge” waves. fhrthermor,e, for hy = 10.5
km a? is negative, impl);ing no vertical flux of energy out. of the atmosphere (w = 0) and
no phase change with height. Without dissipation, such free oscillations would continue
indefinitely without forcing [Lindzen and Blake, 1972].

2.3 Laplace’s Tidal Equation: Nomenclature and Classification of Wave Modes

Laplace’s tidal equation is often written as follows to emphasize the explicit depen-

dences on 3,0, and €,:

Foo(027) = 7037 (22)

For each choice of s and o, there exists a set of ¢, and ©, which satisfy (22). The €}, and
o are geﬁera.lly related parametrically for a given s in diagrams like the ones comprising
Figure 4 for s=1. (Diagrams for s=2 and s=3 are very similar to Figure 4, and are not
shown here to conserve space.) Two families of curves are evident for either eastward-
propagating (£ > 0 ) or westward-propagating (¢ < 0 ) solutions. These are sometimes
referred to as “Class I” or “Solutions of the First Kind” and “Class II” or “Solutions of.
the Second Kind” A more common usage is to refer to the first class as “gravity modes”
and the second class as “Rossby” , “rotational” or “planetary wave” modes. There are
energy partitionings and other properties which differ between these two classes of solutions
. [Longuet-Higgins, 1968], but we will no concern ourselves with these issues. The remainder
of this tutorial will mainly use the terms “gravity” and “Rossby” to distinguish the wave
types. |

We note from Figure 4 some general features and properties. For instance, gravity

(Class I) modes always have €, > 0, whether they are westward-propagating or eastward-
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propagating. On the other hand, Rossby (Class IT) modes only possess ¢, > 0 for westward-
propagating waves; in all other cases the Rossby modes have ¢, < 0. From the expression
for a? in (15), for negative or sufficiently small ¢, (or large k,) the vertical structures are
“trapped” or “evanescent”, whereas for ¢, greater than about 100 solution§ are propagating
with vertical wavelengths less than 100 km. Note that the (1,-1) mode in Figure 4,belohgs :
to the Rossby mode class for €, < 10 but joins the Gravity mode family of curves for
€} > 10. This is the so-called mixed Rossby-gravity wave. This mode exists for higher
wavenumbers as well. The eastward-propagating (¢ > 0) gravity modes in Figure 4 are

referred to as Kelvin waves.

The collection of all ©, are the eigenfunctions of Laplace’s tidal equation, and are

called Hough functions in honor of the individual who pioneered in their numerical com-

putation [Hough, 1897, 1898]. Either the e, or the k, (where ¢, = 4?::3 ~ ?8,::"‘) are
referred to as eigenvalues of the system. Each eigenfunction/eigenvalue pair constitutes a
“mode”. A common nomenclature in identifying modes is to explicitly express s, the zonal
wavenumber, and n, the meridional index (so-named since it provides information on the
number of latitudinal nodes and symmetry characterizing ©,). It is common therefore
to refer to a particular mode as the ©2 mode or just the (s,n) mode, and to add some
information on wave period, as in the “(1,-2) diurnal tide” The (1,-2) diurnal mode might
also be referred to as the “first symmetric trapped diurnal tide” and the “(1,1) mode”
as the “first symmetric propagating diurnal tide” Note also-from Figure 4 that the (1,-2).
mode can assume other periods; at the free mode value of €, = 8.4 (h, = 10.5 km) for

a 256 K isothermal atmosphere, the (1,-2) mode would represent the “5-day wave” (§ =
-0.20).

The above experience in locating the “5-day wave” alludes to two possible ways in
which diagrams like Figure 4 can be utilized. For forced modes we generally know the
frequency of forcing, o; by drawing a vertical line at & on Figure 4, the points of intersection
define the ¢! values corresponding to the modes which comprise the response at that

frequency. This provides information on the vertical structure of the forced response. The
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points of intersection corresponding to the diurnal tide (& = - 1.0) are indicated in Figure
4. We see that the response consists of a mixture of trapped ((1,-1), (1,-2) ...... ) and
propagating ((1,1), (1,2), ...... ) modes, the latter with vertitéa.l wavelengths between 15
and 50 km. This means that some localized heating in the lower atmosphere will result in
(a) several modes which propagate to higher levels; and (b) a response partially contained
at the levels of excitation. (The e-folding distance of the latter will depend on the value
of €,). The degree to which the response falls into either of these categories is deterﬁﬁned
by how well the horizontal and vertical structures of these modes matches that of the
forcing. Examination of the analog of Figure 4 for s=2 (not shown here) would show the
semidiurnal response (& = -2.0) to consist only of propagating modes (e, > 0); Rossby

modes at frequencies higher than 22 do not exist.

For free (unforced) modes, we know that €, = 8.4 for an isothermal atmosphere at
256 K. In Figure 4 the horizontal line defines the free or normal modes that exist for
s=1. Looking down from the points of intersection (labelled “NM”), we can then infer
the frequencies or periods of the normal modes. For s=1, these occur approximately at
periods of 28 hours, 5 days, 8 days, and 12 days, and so on. According to our present
nomenclature, we may refer to the last three of these, respectively, as the (1,-2), (1,-3),
and (1,-4) westwafd—propagating Rossby modes of zonal wavenumber one. The 28-hour
mode is a mixed Rossbngra\'rity mode, and is designated (1,-1). At periods of order 1 day.
or less, this mode behaves like a Rossby mode; at longer periods, it is gravity-like (i.e.,
propagating) in its character. Similarly, if one examines the s=3 family of curves (not
shown here), we would find that the mixed Rossby-gravity normal mode for s=3 occurs

close to & = -.5, corresponding to the “2-day wave”.

Table 1 lists some of the more common westward-propagating modes and their nomen-
clatures, with approximate values of h, and the corresponding vertical scale in an isother-

mal atmosphere calculated from
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= (23)

The present nomenclature is consistent with that of Volland [1988] ahd Chapman and
Lindzen [1970]. In this nomenclature a mode is symmetric about the equator if (n+s) is
even (odd) and antisymmetric if (n+s) is odd (even) for gravity (Rossby) solutions. The
mixed Rossby-gravity modes obey the Rossby mode symmetry conditions. For symmetric
modes ©, (and hence all variables ép, ép, 6T, w, and u) are mirror images with respect to
the equator, whereas v is antisymmetric; for antisymmetric modes v is symmetric and the
other variables change sign at the equatorial node. Another commonly used nomenclature
used for planetary waves is due to Longuet-Higgins [1968], and is based on the value of
(In| = s). This notation is also provided in Table 1. |

Figure 5 illustrates the ©, for the first three westward propagating free Rossby modes
for s=1. Note that these are global scale modes with maximum amplitudes at middle
and high latitudes. Figures 6 and 7 illustrate the corresponding ©, for the diurnal and
semidiurnal tides, respectively. Also shown are the velocity expansion functions U, and V,,
defined by equations (10) and (11). For the diurnal tide, note the relative concentration of
On, Up, and V,, at low latitudes for the propagating (hn, > 0) modes and high latitudes for
the trapped (h, < 0) modes. The propagating modes are also more oscillatory in character.
The semidiurnal wind expansion functions, on the other hand, tend to maximize at middle,
to high latitudes, increasingly so as the meridional index of the mode increases. This
provides the first hint of why wind observations around the mesopause should appear
predomiﬂantly semidiurnal in character at middle to high latitudes, and more diurnal in

character at low latitudes (cf. Figure 1).
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Table 1

Nomenclatures and other data for various common westward-propagating waves in the middle and upper
atmosphere. The column (s, n) indicates the nomenclature used in the present work, and in Volland (1988
and Chapman and Lindzen [1970]. The column (s, |n| — s) indicates the nomenclature, generally restricted
to planetary-wave usage, used by Salby [1981a,b; 1984] and Longuet-Higgins [1968). Also provided are the
equivalent depth for each mode [Chapman and Lindzen, 1970}, h,, propagating-mode vertical wavelengths A,
for an isothermal atmosphere at 256 K, and further descriptors pertaining to the wave. Note that many of the
values of A, in the real atmosphere vary significantly from the isothermal values given below, especially above
and below the mesopuase where the dT/dz term in Equation (26) (cf. Equation (23)) plays an important
role.

Additional
Wave (s,m) (s,In] = s) ha(km) X, (km)  Descriptors
Diurnal tide (1,1) 0.6909  27.9 Gravity; first symmetric propagating
Diurnal tide (1,2) 0.2384 15.9 Gravity; first asymmetric propagating
Diurnal tide (1,3) 0.1203 11.2 Gravity; second symmetric propagating
Diurnal tide (1,-1) 803.356 Rotational; first asymmetric trapped
_ Diurnal tide (1,-2) -12.2703 Rotational; first symmetric trapped
- Diurnal tide (1,-4) - -1.7581 Rotational; second symmetric trapped
Semidiurnal tide (2,2) , 7.8519 311. Gravity; first symmetric (propagating)
Semidiurnal tide (2,3) 3.6665 814 Gravity; first asymmetric (propagating)
Semidiurnal tide (2,4) 2.1098 53.8 Gravity; second symmetric (propagating)
Semidiurnal tide (2,5) 1.3671 41.0 Gravity; second asymmetric (propagating)
Semidiurnal tide (2,6) 0.9565 334 ~ Gravity; third symmetric (propagating)
5-day wave (1,-2) (1,1) 10.5 Rotational; Rossby; first symmetric
10-day wave (1,-3) (1,2) 10.5 Rotational; Rossby; first asymmetric
16-day wave (1,-4) (1,3) 10.5 Rotational; Rossby; second symmetric
4-day wave (2,-3) (2,1) 10.5 Rotational; Rossby; first symmetric
2-day wave (3,-3) (3,0) 10.5 Mixed Rossby-Gravity; asymmetric
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2.4 Group and Phase Velocity

‘Let us now return to our “propagating” solution to the vertical structure equation at
the beginning of Section 2.2. If 0 < h,.' < 4xH, then a? > 0 and the form of the solution
(16) consists of an upgoing and downgoing wave. Imposition of a “radiation condition” at
the top of our domain determines which term in (16) to retain. The radiation condition
demands that at sufficiently high altitudes the energy is upgoing, i.e., the vertical group

velocity is positive, or Cyz > 0.. To derive this condition, note that since

ol =m =i o 4 (24)

then

8o 8o ,8a’ 80242 oo
Cyy=—= —_—f—_—= ——
== g = XG /g =R (25)

[cf. Andrews et al., 1987, p.164). The choice of sign in front of @ must be consistent with
that in (18). From Figure 4, we see that %% > 0 for westward-propagating waves and
%{- < 0 for eastward-propagating waves. Therefore, to maintain Cy, > 0, in (25) we must

choose +a for westward propagating waves and —a for eastward propagating waves.

Now, let us see what this implies in terms of phase progression in height and longitude.

Our solution for propagating modes is of the form

ei(:k:}:a:-et)

The equation sA £ az — gt = K defines the line of constant phase, e.g., the crest of
the oscillation if K = 0. At a fixed A, £az — ot = K'. Therefore, for either westward
propagating (¢ < 0, +a) or eastward propagating (¢ > 0, —a) waves we have z = =t+K",
i.e., downward phase progréssion as time increases. (We see now why the downward phase
progressions characterizing Figure 1 are consistent with a wave source at lower heights,

i.e., O3 and H;O insolation absorption, and upward propagation through the mesopause.)
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Continuing, for a fixed ¢ we have sA\+az = K' or z = —2)+K" (z = +2A+K") implying
westward (eastward) phase tilt for westward (eastward) propagating waves. Therefore,
westward (eastward) phase tilt for westward- (eastward-) propagating waves is consistent
with downward phase progression and upward energy propagation. These are important

features to look for in observational data to verify theoretical interpretations.

2.5 Effects of Temperature Structure, Dissipation, and Mean Winds

In Section 2.3 we showed that free oscillations exist in an isothermal, dissipationless
atmosphere. For T, = 256 K, h,, and ¢, assume values of 10.5 km and 8.4, respectively. In
Section 2.2 we were able to find the points of intersection corresponding to €, = 8.4, and

“to infer the periods and horizontal structures of the various free modes. Presently, we will
discuss in simple terms how the additional complexities of vertical temperature structure,
mean zonal winds, and dissipation modify our concepts about free atmospheric oscillations.
In Section 4 we will examine the effects of more complicated distributions of winds and

temperatures that necessitate comprehensive numerical treatment of the problem.

In a non-isothermal atmosphere, the definition of a2 in (15) is as follows:

of = «H +hc:H/dz _ _‘]1; | (26)
Above ~ 90 km a? > 0, implying propagating solutions, energy leakage into the thermo-
sphere, and a finite time for the oscillations in the absence of continual forcing. A true
resonance (infinite response) no longer exists. Lindzen and Blake [1972] assumed a mean
distribution of temperature with height, solved (15) and (26) subject to a specification
of tropospheric heating, and examined the response (surface perturbation pressure) as a
function of the equivalent depth (2, in (26)). Their result is shown in Figure 8a, and
illustrates a sharp but finite maximum at h = 9.95 km. Their solutions also exhibited
amplitude groyvth and phase tilt with height above 90 km, and nonzero vertical velocities
when T, varies with height.
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Lindzen and Blake [1972] also examined the influences of eddy and molecular dissi-
pation and surface friction on the Lamb modes. In this case the response is dependent
on wave period. Figure 8b illustrates the analog to Figure 8a, except that dissipation is
taken into account. Figure 8¢ illustrates the additional effects of including surface friction.
We see that the effects of dissipation and surface friction are to reduce the magnitude and
signiﬁcantly broaden the response, with increasing effects as the period becomes longer. It
is also evident that surface friction dominates over internal dissipation, and is therefore the
determining factor in limiting the “lifetime” of free modes. Lindzen and Blake estimate
lifetimes on the order of 10 to 100 wave cycles for periods between 24 hours and 2 hours,
respectivély.

Salby [1979, 1980] examined the resonance characteristics of Lamb modes in the pres-
ence of vertical temperature structure and dissipation, with emphasis on the longer-period
‘Lamb’ waves (2-to 20 days). His results for the s=1 Rossby-gravity mode are illustrated
in Figure 9. He notes the secondary peak occuring near h = 6.4 km, which v}as discovered
by Pekeris [1937]. This secondary peak is due to the stratospheric temperature duct, and
was apparently overlooked by Lindzen and Blake who only took their calculations down to
h = 8.5 km. This secondary peak disappear-s in the presence of realistic dissipation [Salby,
'1979; see Figure 9]). In honor of the original discoverer, Platzman [1988] has suggested

referring to this as the 'Pekeris’ mode.

Lindzen and Blake [1972] did not find any noticeable effects on amplitudé and phase
structures due to dissipation below 100 km for Lamb periods < 24 hours. However, for the
longer-period modes examined by Salby, increased amplitude reductjon and phase tilt with
height accompany an increase in ‘wave period (seg Figure 10). Figure 10 also implies that
phase tilt with height in the real atmosphere is not inconsistent with the concept of a free
atmospheric mode. Enhanced vertical leakage of energy should diminish wave lifetimes,
but the dominant effect remains to be surface friction. Salby’s work also suggests free
mode lifetimes to be on the order of tens of wave cycles, and also discusses the role of

variations in dissipation in reflection of wave modes, particularly when the doppler-shifted
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frequency becomes small.

The zero-order effects of non-zero winds can be ascertained quite easily. If we suppose
that the troposphere is characterized by a mean eastward wind U sin 8 (effectively a uniform

superrotation of the atmosphere), then the o appearing in our equations

—_— — —i0

ot

should be replaced by the Doppler-shifted or intrinsic frequency, op:

5 — —i(oc —kU) = —iop -

t 25

Q|

A
at
where k = £. In this case, the horizontal scale in Figure 4 is op/Q, not o/Q. To an

observer on the ground, however, the wave frequency would be

Oobs = 0D + kﬁ)

or equivalently, the observed period is

_ 27
lep + kU|

Toba

For the (1,-2), (1,-3), and (1,-4) normal modes for which ¢ = 8.4, we infer from Figure 4 |
the correspc;ﬁding normalized frequencies of about -0.2, -0.12, -0.08, or periods of 5, 8.3,
and 12.5 days, respectively. If we interpret.these to be Doppler-shifted frequencies, then
for 2 nominal value of U = 10 ms™!, the observed periods ought to be about 5.6, 10.2,
and 17.1 days. Therefore, we expect the actual atmospheric manifestations of free Rossby
modes to bé Doppler-shifted to longer periods. This is why we associate, for instance, the
observed 2-3 week oscillation referred to as the “quasi 16-day wave” [Madden, 1979] with
the (1,-4) Rossby mode possessing an eigenperiod of only 12.5 days. |
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3. FORCING OF ATMOSPHERIC TIDES

Atmospheric tides represent an obvious example of “forced” atmospheric waves for
which we know the wave periods quite well. Lunar tides are of course determined by the
period of the moon’s apparent rotation around the earth. Here we will be mainly con-
cerned with solar or thermally-forced tides, which are excited by thé periodic absorption
of solar radiation connected with the appérent motion of the Sun around the Earth. Figure
11 is a schematic of the main points: Various parts of the solar spectrum are absorbed
by tropospheric water vapor (near-IR), stratospheric ozone (UV), and major atmospheric
constituents (O2 and N;) in the lower thermosphere (Figure 11a). (Note that the region
around the mesopause, where most meteor and MF radar measurements provide wind
- data, cf., Figures 1-3, are in a region of “no excitation” At any given height, the day-night
variation of absorbed radiation (and hence heating) gives rise to Fourier components which
are integral subharmonics of a solar day: 24 hours, 12 hours, 8 hours, etc.; Figure 11b).
Each of these harmonic kcomporvlents (referred to as the diurnal tide, semidiurnal tide, ter-
diurnal tide, respectively) poésess a height-latitude distribution (we are ignoring longitude
dependences for the moment). Near the height of maximum heating, the latitudinal distri-
bution for a given harmonic might look something like Figure 11c (i.e., maximum at low

latitudes and minimum at the poles, in concert with the solar zenith angle influence).

Now, given that the ©, form a complete orthogonal set, we can expand the height-

latitude distribution of heating for a given frequency component, J "(2,0) (cf. equation

()

J?(2,0) = ) _ ©a(8)Tn(2)

Each “mode” defined by its eigenfunction-eigenvalue pair (©,, h,) now possesses its own
vertical profile of heating J,(z). The vertical structure of each mode is determined by
Jn(z), hn, and the mean thermal structure of the atmosphere vis-a-vis Equations (15) and
(6).
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Typical examples of Jn(z) for diurnal and semidiurnal tides are provided in Figure
12 [Forbes and Garrett, 1978]. Note that most of the heating goes into the (1,-2) mode
for the diurnal tide, and into the (2,2) mode for the semidurnal tide, as the é,, for these
modes (cf. Figures 6 and 7 ) most closely correspond with the latitudinal distribution of
heating (cf. Figure 11b). |

4. NUMERICAL MODEL RESULTS

4.1 Atmospheric Tides

In Section 2 we discussed the eigenfunction-eigenvalue problem corresponding to forced
and free atmospheric oscillations in an isothermal, dissipationless atmosphere. B).' defini-
tion “separability” existed, so that each mode possessed its own vertical structure. (Indeed,
use of thé term “mode” implies separability). Separability of height and latitude depen-
dences also exists in a non-isothermal atmosphere, and additionally for special treatments -
of height-dependent dissipation [Lindzen and McKenzie, 1967; Lindzen, 1970]. However, in
the joint presence of latitude-dependent rotation and vertical diffusion of heat and momen-
tum, or in the presence of latitude dependent mean winds, the equations for an oscillation
with specified frequency and zonal wavenumber are nonseparable. First of all, this neces-
sitates a numerical approach to the problem; secondly, strictly speaking, this precludes
reference to “modes” particularly in the mesosphere and lower thermosphere. However,
it is commonplace to use modal terminology nontheless, as many observed features of

. prominent oscillations exhibit characteristics very similar to what would be expected on
the basis of “classical” theory. In fact, it is commonplace to decompose the thermal forc-
ing in numerical models into Hough modes (as in Figure 12), even though the solution is
nonseparable; and in fact, the solutions are sometimes decomposed into Hough modes to
facilitate interpretation of the results. We will now breifly review some of these numerical

models.
Forbes and Garrett [1979] review basically two types of numerical models which take
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into accoﬁnt dissipation, mean winds, and other processes in simulations of middle and
upper atmosphere tides. The first genre neglect eddy and molecular dissipation, but in-
clude mean winds and meridional temperature gradients, Newtonian cooling, and perhaps
a Rayleigh friction (linear damping) term to filter out small-scale noise or to facilitate
application of upper boundary conditions. Dispensing with diffusion allows one to derive a
single second-order partial differential equation in height and latitude for the perturbation
geopotential [Lindzen and Hong, 1974; Aso et al., 1981; Walterscheid et al., 1979a,b; 1980;
Vial, 1987; Forbes a.nd Vial, 1989]. In the context of the solution of these nonseparable

"+ equations, the terminology of “mode coupling” has arisen. This refers to the generation

of tidal modes (determined through an orthogonal expansion of the calculated response)
which are not forced directly by thermal excitation, but which arise'because of the non-
separability of the governing equation. For instance, if only the (2,2) mode is excited
in these models, the response at say 90 km consists of many modes ((2,2), (2,3) , ...... )
due to the “distorting” effects of the mean wind distribution. In the above models the
(2,4) mode appears to receive about equal contributions from direct thermal forcing and
mode coupling via the (2,2)-mean wind interactions which tend to add in phase. On the
other hand, for the (2,3) mode the effect of mode coupling is to interfere with the directly
forced component and thereby reduce the (2,3) response above the level of ozone heating.
In the case of (2,5), excitation appears to arise almost exclusively due to direct thermal
forcing (mode coupling is weak). More recent studies b& Forbes and Hagan [1987] and
Vial [1986] address the diurnal tide, and utilize a Rayleigh friction (linear damping) term
to parameterize turbulent diffusion of momentum. For the dominant diurnal propagating
(1,1) mode, latitudinal broadening (or leakage to high latitudes) due to dissipation near 90
km can be viewed as a coupling into the trapped or evanescent (1,-2) mode, whereas the
asymmetries in the modified modal shape induced by the global mean wind distribution
(particularly around solstice) can be interpreted as a coupling into the (1,2) and (1,-1)

asymmetric modes.

At the next hierarchal level of modeling pertaining to atmospheric tides, Forbes [1982
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a,b] includes eddy and molecular diffusion of momentum and heat so as to properly address
the structural modiﬁcafion of tides in the 80 - 150 km region and their penetration to higher
altitudes. This requires numerical solution of the four coupled 'pa.rtial differential equations
in the three velocity cdmponents and temperature, as opposed to a single equation for the
geopotential as in the above studies. Forbes [1982 a,b] provides explicit simulations from
the surface to 400 km for the solar diurnal, solar semidiurnal, and lunar semidiurnal tides
due to realistic thermal and gravitational forcing, as well as normalized thermospheric
extensions of solar semidiurnal modes above 80 km for use in the fitting, extrapolation and

interpolation of observational data (Forbes and Hagan, 1982].

Dlustrations of amplitude and phase vertical structures for the solar semidiurnal and
diurnal tides from the Forbes [1982 a,b] model are shown in Figures 13 and 14, resp.ectively
In Figure 13, note the relatively long vertical wavelength characterizing the response below

50 km; this is consistent with most of the heating going into the long-wavelength (2,2)
mode (Figure 12; Table 1); above about 50 km, the wavelength decreases, due to the
increased presence of short-wavelength modes .induced by “mode coupling” due to the
strong mesospheric jets. The region Between 70 and 90 km is a region of evanescence for
the (2,2) mode, due to the combined effects of its large h, and the negative temperature
gradient (cf. equations (15) and (6)). However, in this region the higher-order modes
are growing exponentially with height, and soon begin to dominate the solution in the
lower thermosphere. However, as molecular viscosity begins to dominate in the 120 - 150
km region, these shorter vertical wavelength modes (cf. Table 1) are more susceptible to
dissipation, and the longer wavelength modes begin to dominate at higher altitudes. In
the upper thermosphere, molecular diffusion of heat and momentum are so efficient that
it is difficult to maintain vertical shears in the wind and temperature fields, and the tidal

fields asymptote to constant values above about 200 km.

The situation is similar for the diurnal tide, illustrated in Figure 14. Note that at
high latitudes (60° in Figure 14) the phase is more or less constant with height, consistent

with the dominance of trapped modes whose maxima are at high latitudes (cf. Figure 6).
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At low latitudes the solution is dominated by the (1,1) mode, with a vertical wavelength
of order 30 km (cf. Table 1).

At this point we should comment on the characteristics noted in reference to Figure

1 in Section 1. In Section 2.4 the downward phase progression with height was shown

to be consistent with a positive (upward) group ‘velocity, consistent with the excitation

sources being located somewhere below 80 km. At high latitudes, the tidal fields near the

| mesopause are dominated by the semidiurnal propagating modes, particularly higher order
modes than (2,2); since there is relatively little in-situ heating, the diurnal tide is weak

at latitudes greater than about 40°; furthermore, the higher-order semidiurnal tides are

growing exponentially with height in this regime where the (2,2) mode is quasi-evanescent.

This accounts for the predominance of the semidiurnal tides at Saskatoon in Figure 1.

At Townsville (19°S), much closer to the equator, the propagating semidiurnal tides are

relatively small, and the diurnal tide enjoys its maximum amplitudes (cf. Figure 6).

4.2 Planetary Waves

Although the above mode eoupling effects are important in the context of atmospheric
tides, the tidal wave phase speeds are generally large compared to the mean flow speed U;
the resulting effects do not represent drastic consequences. In effect, these “fast” waves
do not “see” the relatively slow background flow. However, as the wave periods increase
from 2 to 20 days for planetary (Rossby) waves, the phase speeds get smaller and the
effects of mean winds assume much greater importance. The above arguments can be
made more quantitative by noting the Doppler-shifting effects of mean winds that appear
when assuming solutions of the form ei(**=7%):

8 U d
5t asmeox
where k = —2— and the zonal phase speed is Cpj, = %. For the migrating tides o = s,

— ik(=Cpy +T)

8o that Cps = Qasin 6 or about 464 ms™! at the equator and 232 ms™! at 60° latitude. If
T is the period in days, then for the westward propagating planetary waves,
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and the above tidal phase speeds are reduced by the factor sT. For the s=1 10-day wave
Cph = 23 ms™ at 60° latitude, and for the s=3 2-day wave Cps =~ 39 ms~!. In either
case, and for other planetary waves as well, summer easterlies of order -20 to -60 ms™! can
obviously have drastic effects on the propagation of planetary waves. When the condition
op = —Cpi + U = 0 is satisfied, we refer to this as a critical line, and anticipate that this
must imply drastic effects (N.B. for stationary planetary waves Cpj = 0, and this condition
reduces to the zero wind iine). Moreover, when op becomes small we intuitively expect
the wave to be more sensitive to dissipative processes. Below, we will examine the role of

zonal mean winds in greater detail.

Salby [1982 a,b] has utilized the first genre of model described above to investigate the
behavior of planetary waves in the presence of realistic background winds. In this work he
forced the lower boundary with a constant vertical velocity with respect to latitude (with
a change of sign at the equator for asymmetric forcing), and examined the response as
a function of frequency, with the zona;l wavenumber and background wind configuration
fixed. An example of his results for s=1 westward propagating modes is illustrated in
Figure 15. Note that the response is very structured, and differs considerably between
typical equinoctial and solst.icia.l conditions. These results reflect the extreme sensitivity
of the planetary wave response to the background wind field. Note, however, that the
responseﬁ tend to maximize near periods of 5, 9, and 16 days. As Salby shows, the
tropospheric and lower stratospheric responses near these periods are structurally similar
(i.e., latitude dependence of amplitude and phase) to what we would expect on the basis of
“classical théory” piesented in Section 2. Therefore, it appears that even in realistic wind
configurations that it is valid to speak in terms of a resonant response of the atmosphere,
and to associate these responses with the free Rossby modes of La.pla(.:e’s tidal equation.

However, above the lower stratosphere, the atmospheric response is further complicated
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by high wind speeds and shears. We will now briefly discuss some of these effects.

Dickinson [1968] has performed an analytic investigation of the vertical propagation
of stationary planetary waves through a background wind field consisting of significant
vertical and horizontal shears. This theory is applicable to the long-period oscillations
| investigated here, and provides a framework for interpreting the results. Dickinson’s work
represents an extension of Charney and Drazin [1961], who limit their analysis to a mean
zonal wind independent of latitﬁde with constant Coriolis parameter. Cha.x;ney and Drazin
conclude that vertical propagation of stationary planetary waves is only possible in westerly
wind regimes, when the westerly wind speed is below some upper limit (sometimes referred
to as the “Charney-Drazin critical speed”). The basic idea of Dickinsons’s work can be
extended to traveling planetary waves if we simply replace “westerly wind” (U > 0) with
“westerly wind with respect to the wave” (T — Cpa) > 0). The main conceptual results
of Dickinson [1968] are summarized in his Figure 1, which is reproduced here as Figure
16. Assuming winter solstice conditions and a mid-latitude source of wave energy, vertical
propagation of planetary waves is affected as follows. At middle latitudes, the westerly jet
is sufficiently strong to preclude efficient propagation above the stratopause. Poleward of
the westerly jét, a wave guide is formed which traps waves between thé strong westerlies -
and the geometric pole; Dickinson refers to this as the polar cap wave guide. This wave
guide provides a ducting channel through which planetary waves can penetrate to the
mesosphere and lower thermosphere. (A similar ducting channel can in principle be realized
between two regions of high westerly wind separated by weak westerlies). Planetary wave
disturbances can also be diffracted into an eqﬁaton’al wave guide formed between the
westerly jet of the winter hemisphere and the zero-wind line (or critical line in the case
of traveling waves) transition to stratospheric summer easterlies. Dickinson’s analysis
indicates the planetary disturﬁances would be absorbed rather than reflected along such
zero-wind lines, providing an impediment to significant vertical penetration (i.e., to the
mesopause). Dickinson therefore suggests that whatever stationary (and therefore long-

period) planetary wave disturbances might be realized at the equatorial mesopause would
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~probably originate from leakage connected with the polar wave guide. It seems .rea.sonable
to assume, however, that the degree of attenuation is dependent on the strength of the
westerly jet, and the separation distance between the jet and the zero-wind (or critical)
line.

A numerical simulation [Salby, 1981c] of the 2-day wave under Northern Hemisphere
winter solstice conditions is presented in Figure 17. This is a case of ‘moderate’ mean
wind effects, i.e., not so extreme as the s=1 10-day and 16-day waves. Nevertheless,
the tendency for exclusion of the solution from the strong winter westerly and summer
easterly jets is evident. In this case the equatorial waveguide is very broad (wide separation
" between the critical line in the summer Hemisphere and the winter jet maximum). Thére
is also a tendency for the wave maxima to shift to the summer Hemisphere, i.e., to the
region of weak westerlies with respect to the wave. Note that the equatorial amplitudes of
meridional wind at 35°S are of the same order (~ 20 — 30ms™) as the episodically large
2-day wave amplitudes observed during local summer over Adelaide, S. Australia (Figure
3). Therefore, Figure 17 provides some measure of the true height/latitude temperature

and meridional wind distributions for the episodically large 2-day wave.

5. CONCLUDING REMARKS AND OUTLOOK FOR THE FUTURE

This tutorial has sought to expose the non-dynamicist to the fundamental theory, . A
observational evidence, and numerical modeling results pertaining to tides and planetary
waves in the mesosphere and lower thermosphere. At this point, there remains much to
be done. While radars are capable of providing long time series and therefore identifying
the presence of planetary wave periodicities, they are distributed too sparsely to provide
adequate infémation on zonal wavenumbers. On the other hand, satellites are now capable
of providing good spatial coverage with marginally useful temporal information. Moreover,
the region between 100 and 150 km is practically devoid of any measurements capable of -
delineating planetary waves. This combination of capabilities and circumstances represents

an ideal situation for joint ground-based/satellite observations of the mesosphere/lower
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thermosphere (MLT), a task promised to be accomplishéd by the NASA TIMED Mission.

There is also considerable room for theoretical and numerical modeling advances. The
question of nonmigrating (i.e., longitude-dependent) diurnal tides needs to be addressed,
and the work of Forbes and Groves [1987] improved upon with greater attention to various
tropospheric excitation sources. The pioneering work of Salby [1981a,b,c] needs to bé
extended, particularly with regard to inclusion of more vrealistic mean wind distributions
and dissipative processes, both of which are essential to understanding the propagation
characteristics of planetary waves in the mesosphere and lower thermosphere. The possible
in-situ generation of Rossby-like modes in the MLT regime, pbssibly due to solar radiation
or joule heating variations, or the periodic filtering of gravity waves originating in the
lower atmosphere and depositing heat and momentum in the upper atmosphere, warrant
investigation. Some initial work on gravity-type normal modes of the thermosphere has
been accomplished by Larsen and Mikkelesen [1987], but no work has been done on possible
Rossby-like normal modes of the thermospheric regime.

As a potential influence of planetary waves on the MLT region, even when they may
not penetrate beyond the mesosphere, consider Figure 18. This is a plot of power spectral
densities constructed from daily values of the semidiurnal tidal amplitude derived from
wind observations near 95 km over Obninsk, Russia, during January through February,
1979 (cf. Figure 2). We see that the semidiurnal tide is modulated at periods near 10 days
and 20 days, possible due to interactions with mean winds of these periodicities in the
mesosbhere. The modulations are significant; the 10-day modulation amounts to about

+7 ms~! about a mean value of ~ 20 ms™! in the semidiurnal wind amplitude.

Heretofore, studies of tides and planetary waves have considered these wave compo-
nents to be linearly independent. Besides improving on our modeling and experimental
capabilities in this direction'; we must now pursue nonlinear interactions between these wave
components [cf. Teitelbaum and Vial, 1991}, and with the mean dynamics, thermodynam-

ics, and compositional state of the MLT region. The data in Figure 18 demonstrate the
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potential influence of planetary waves on the day-to-day variability of atmospheric tides,
and underscores the importance of continuous wind and temperature observations. New
methods of data analysis must also be'explored, such as bispectral estimation which may
provide greater insight into the interactions between waves. Finally, considerable progress
will not be made until a combined ground-based and satellite-based effort is launched, hope-
fully in connection with.the TIMED mission, to provide the necessary space-time coverage

to disentangle the wavenumber/frequency spectra of large-scale waves in the MLT regime.
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FIGURE CAPTIONS

Figufe 1. Height-local time contours depicting average northward winds during the period
March 18-27, 1979, over Townsville, Australia (19f’S, 147°E) and Saskatoon, Canada
(54°N, 107°W), as measured by the spaced antenna drift method. Data courtesy of
Prof. R.A. Vincent and Prof. A.H. Manson.

Figure 2. Power spectrum of daily mean meridional (dashed line) and zonal (solid line)
winds observed near the mesopause over Obninsk, Russia (54°N, 38°E) for January

through February, 1979. Data courtesy of Dr. Yu.l. Portnyagin.

Figure 3. The amplitude of the quasi two-day wave for January, 1984, through January,
1991, near the mesopause over Adelaide, S. Australia (35°S, 138°E). These amplitudes
were determined using a complex demodulation procedure, with an effective bandpass
of 44 to 53 hours. Meridional winds are shown in the top panel with the zonal winds

below. From Harris [1993].

Figure 4. Eigenvalues ¢}, of wave modes of zonal wavenumber s=1 vs. normalized frequency
fi- Waves with positive (negative) frequencies propagate to the east (west). The
dots corresponding to e} = 0 denote the so-called Rossby-Haurwitz waves. The dots
corresponding to “NM” refer to the normal modes (e}, ~ 8.4). The vertical series
of dots at & = —1.0 define the €} for the diurnal tide. The eastward-propagating
gravity-type (Class I) modes are the Kelvin Waves. Figure and caption adapted from
Volland [1988].

Figure 5. Hough modes corresponding to the first three free Rossby modes of zonal
wavenumber one. Adapted from Walterscheid [1980].

Figure 6. Normalized expansion functions for the solar diurnal tide. Top: Hough Function. |
Middle: Eastward wind expansion function. Bottom: Northward wind expansion
functi;':n; Solid line, (1,1); dashed, (1,-1); dashed-double dot, (1,2); dashed, (1,-2);
dahsed-dot, (1,-4). From Forbes [1982a). A

Figure 7. Same as Figure 6, except for the semidiurnal tide. Dashed line, (2,2); solid,
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(2,3); dotted, (2,4); dashed-dot, (2,5); dashed-double dot, (2,6). From Forbes [1982b).

Figure 8. Fractional response in surface pressure |§p/p,| as a function of equivalent depth.
(a) Without dissipation and without surface friction; (b) With dissipation and without
surface friction; (c) with dissipation and with surface friction. From Lindzen and Blake
[1972). |

Figure 9. Total energy as a function of § = {{ for the s=1 mixed Rossby-gravity mode,
with dissipation (solid line) and without dissipation (dashed line). The secondary
peak for the conservative case (dashed lipe) is due to buoyancy trapping at upper
levels [Salby, 1979]. The absence of a secondary peak in the presence of dissipation
is due to the reduced energy flux reaching these levels from the surface [Salby, 1980].
Figure and caption adapted from Salby [1980). |

Figure 10. Normalized velocity magnitude (top) and phase (bottom) for the lowest order
=1 westward propagating waves in the presence of dissipation. The notation n-m
= 0,1,2,3 refers, respectively, to the mixed Rossby-gravity mode, and the “5-day”,
“10-day”, and “16-day” waves. Vertical structures for the true Lamb mode are shown

for comparison. From Salby [1980].
Figure 11. ‘Schematic of vertical (left), latitudinal (top) and diurnal (bottom) variations
in tidal heating.

Figure 12. Vertical profiles of diurnal (top) and semidiurnal (bottom) heating, e~%J,
where z = —In(p/p,), due to insolation absorption by ozone and water vapor, cor-

responding to various solar tidal modes. The units are Joules kg~! sec™!. Adapted

from Forbes and Garrett [1978].

Figure 13. Amplitude (left) and phase (right) for solar semidiurnal eastward winds at 0°,
+30°, and +60° latitude for December solstice conditions. From Forbes [1982b)].

Figure 14. Same as Figure 13, except for the solar diurnal tide. From Forbes [1982a).

Figure 15. Simulated atmospheric response as a function of normalized frequency for

s=1 westward propagating waves, for typical solstice and equinox background wind
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conditions. From Salby [1981b).

Figure 16. Schematic of propagation paths for stationary planetary waves excited in the
mid-latitude N. Hemisphere during winter conditions. From Dickinson [1968)]. For the
traveling planetary waves, the barrier represented here by the zero wind line would
be replaced by the frequency-dependent critical line; for periods greater than about
10 days and small zonal wavenumbers, the critical line is close to the zero wind line,
and for progressively smaller periéds the critical line recedes ﬁp into the mesosphere

and towards high latitudes.

Figure 17. Simulated meridional wind (ms~?) and temperature (K) as a function of height
and latitude for the quasi two-day wave. Typical December solstice conditions are

assumed. From Salby [1981c].

Figure 18. Power spectrum of daily amplitudes of semidiurnal meridional wind observed
near the mesopause over Obninsk, Russia (54°N, 38°E) for January through February,
1979. Data courtesy of Dr. Yu.l. Portnyagin.
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