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1. INTRODUCTION

Atmospheric tides are global-scale oscillations in temperature, wind, density, and pres

sure at periods which are subharmonics of a solar or lunar day. Strictly speaking, atmo

spheric tides may be either eastward- or westward propagating, but by far the largest

components are those which are westward-propagating or migrating with the apparent

motion of the sun or moon. Planetary waves are longer-period global oscillations which

are either stationary (i.e., fixed to the earth) or zonally-propagating in either direction.

Without intending to diminish the importance of the other wave components, in the inter

est of brevity the present tutorial will mainly concentrate on westward-propagating solar

tides and planetary waves.

A brief view of typical observations provides adequate motivation for the present tuto

rial. Figure 1 illustrates height/local time contours representing average meridional wind

patterns between 80 and 100 km over Townsville, Australia (19®S, 147®E) and Seiskatoon,

Canada (54®N, 107®W) during the period March 18-27, 1979. Note first of all that the

character is mainly diurnal over Townsville (24-hour harmonic dominates), and mainly

semidiurnal over Saskatoon (12-hour harmonic dominates). Why do you suppose this is?

Why is it that phase progression is downward (i.e., the wind contours tilt to the left in

Figure 1)? And, given that there are no significant heat sources at these heights, why is

it that these "tidal" oscillations assume such a prominent role in the meteorolo^ of the

mesosphere and lower thermosphere?

Instead of the average local time (day/night) wind structure examined in Figure 1,

now suppose that we compute the daily mean wind (24-hour average) each day at a single

height and form a time series of the daily values. The spectral density curve corresponding

to daily mejui winds meeisured over Obninsk, Russia (54® N, 38®E) during January through

February, 1979, are illustrated in Figure 2. Note that prominent peaks occur near 5, 9,

and 16 days period; a simple band-pass/IFT analysis demonstrates that these peaks each

correspond to some 5-10 ms"^ oscillation in the wind, a substsLntisd fraction of the total
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wind at any given time. Assuming this example isrepresentative, why is it that the spectral

peaks should fall at these specific periods?

Perhaps the most well-known long-period oscillation is the so-called two-day wave.

A history of 2-day wave amplitudes determined from mesopause winds measured over

Adelaide, Australia (35®S, 138®E) is illustrated in Figure 3 [Harris, 1993]. Note that

amplitudesof order 20-40 ms""^ episodically occur. Why should a prominent oscillation at

this period exist near the mesopause?

This tutorial is motivated by the simple fact that tidal and planetary waves often

dominate the meteorology of the atmosphericregion between 80 and 150 km. Students and

scientists engaged in studies of this regime should have some rudimentary imderstanding

of the origins, characteristics, and governing mechanisms pertinent to these oscillations.

The present tutorial seeks to impart this basic understanding.

Given that the present work is a tutorial rather than a comprehensive review of re

search in the field, I have not provided extensive referencing to the huge body of published

literature on tidal and planetary waves. Some exceptions axe works of historical impor

tance, or recent papers which are particularly illustrative or instructive. For more extensive

expositions than provided here, including references to the literature, the reader is referred

to Chapman and Lindzen [1970] and Forbes [1982 a,b] for solar and lunar atmospheric

tides, and to Walterscheid [1980] and Salby [1984] for traveling planetary waves. There

also exists an extensive literature on stationary plsuietary waves. A recent paper which

emphasizes the vertical extension of stationary planetary waves into the mesosphere/lower

thermosphere is Pogorel'tsev and Sukhanova [1993].

In the following section, the mathematics governing free and forced oscillations in a

horizontally stratified isothermal atmosphere is developed. The resulting analytic solutions

provide a reference framework for interpreting observations Euid ntmierical simidations.

Anticipated modifications to this simple theory due to non-isothermality, mean winds, and

dissipation are also discussed. Thermal forcing of atmospheric tides is covered in Section



3. In Section 4 several examples of numerical simulations of tidal and planetary waves

are presented and interpreted. A brief outlook of potentially fhiitful areas of research is

provided in Section 5.



2. MATHEMATICAL BASIS

2.1 Governing Equations

In the absence ofmean winds, the linearized equations for atmospheric perturbations

on a sphere are [Holton, 1975]:

du 1
- 2nsin^t; + = 0

ot aco8 a OA

dv 1ar +2fisintfu + ~ = 0

^ itx I \r2

I ,du d , Id,,

u = eastward velocity

V = northward velocity

$ = geopotential

w = dzldt

= buoyancy frequency

squared

n = angular velocity

of earth

Po = basic state density

^ = -Hln(j>/p,)

X = longitude

9 = latitude

t = time

K ~ Cjj Y

J = heating per unit mass

a = radius of earth

H = constant scale height

(1)

(2)

(3)

(4)

Wewill nowfollow the spirit of the development in Holton [1975], although some normaliza-
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tion factors will differ. Assmne the perturbations to consist of longitudinally propagating

waves of zonal wavenumber s Eind frequency a\

- (rt)] (5)

This (aA —ct) form for the phase is chosen so that positive values for a correspond to east

ward propagating waves and negative values to westwEird propagating waves (i.e., the real

part of (5) is cos(3A —at) and the crest of the wave occurs where A= at/3). Substituting

(5) into (1) - (4) eliminates derivatives with respect to t and A, permitting consolidation

into a single second-order partial differential equation for $ in z and 9, Sepatrable solutions

of the following form exist where {Qn}aU n is a complete orthogonal set:

* = (®)
n

i = ^e„wj„(z) (7)

(8)
n

" = (9)
n

where

1 r 5 sin^ d

p.stan^ , dTf J- ,3ian(7 , a
775 2a\ I r ^
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The condition for separability is as follows:

. .1 d po . d ^ ^ 1 d .PoKJn. • tV ^ ^ ,
Podz^

where arises as the separation constant. Defining GJ, = assuming an

isothermal atmosphere for which ^ where H = constant = 7.5 km (corresponding

to To = 256^"), and letting x = zfH^ results in the vertical struciure equation (for an

isothermal atmosphere):

The ^-dependent part of the solution is embodied in Laplace's iidal equation [Laplace,

1799, 1825];

+r^le. + - 0if'ip - li') in '' np-r''!"

where n —sm6 and €„ = (2na)^/^/i„. We will now examine solutions to the vertical

structure equation zuid Laplace*s tidal equation. Note that they are linked through hn^

which is referred to as the "equivalent depth". This nomenclature originates from the first

appearance of equation (14) in connection with the ocean tide problem where h is the

ocean depth [Laplace, 1799, 1825; Taylor, 1936].

2.2 Vertical Structure Equation: Forced and Free Solutions

Rewriting (13) as follows

t1?n'^ +a'G'„ =F(x) (15)
where ^ the form of the solution is

G; - Ae'"" + (16)



Now we will examine the cases where F(x) ^ 0 ("forced" solution) and where F(x) = 0

("free" solution). When F(x) ^ 0 there are two possibilities. If /in < 0 or > 4kH, then

< 0 and

G'n ~ e-l"!* (17)

above the source region for a bounded solution. In this case the solutions are referred to

as "evanescent" or "trapped" since the wave oscillations are more or less confined to the

region of excitation. If 0 < /i„ < 4/cir, then > 0 and a "radiation condition" (Cgz > 0)

at z = oo implies

G'„ ~ (18)

where (+ , -) corresponds to (westward , eastward) propagating waves (see Section 2.4).

This is the so-called propagating solution, where the wave propagates away from the soiu-ce

region.

When F(x) = 0 the only nontrivial solution satisfying boundedness and tx; = 0 at

z = 0 is:

G'„ ~ (19)

and

(20)

where hn = 10.5 km for H = 7.5 km. This free (unforced) solution corresponds to a

resonant response of the atmosphere. Note that the above solution implies

li-e''' (21)



corresponding to energy decay away from the surface {pv?) while horizontal velocity and

other wave fields increase exponentially (by a factor of 40 from the surface to 100 km).

These waves are sometimes called "Lamb" or "edge" waves. Furthermore, for hn = 10.5

km is negative, implying no vertical flux of energy out of the atmosphere (lo = 0) and

no phase change with height. Without dissipation, such free oscillations would continue

indefinitely without forcing [Lindzen and Blake, 1972].

2.3 Laplace's Tidal Equation: Nomenclature and Classification of Wave Modes

Laplace's tidal equation is often written as follows to emphasize the explicit depen

dences on 3\ <7, and

F.AQ'n') = (22)

For each choice of s and cr, there exists a set of 6^ and ©n which satisfy (22). The and

a are generally related parametrically for a given s in diagrams like the ones comprising

Figure 4 for s=l. (Diagrams for s=2 and s=:3 are very similar to Figure 4, and are not

shown here to conserve space.) Two families of curves are evident for either eastward-

propagating (y > 0 ) or westward-propagating (7 < 0 ) solutions. These are sometimes

referred to as "Class I" or "Solutions of the First Kind" and "Class II" or "Solutions of

the Second Kind" A more common usage is to refer to the first class as "gravity modes"

and the second class as "Rossby" , "rotational" or "planetary wave" modes. There are

energy partitionings and other properties which differ between these two classes of solutions

[Longuet-Higgins, 1968], but we will no concernourselveswith these issues. The remainder

of this tutorial will mainly use the terms "gravity" and "Rossby" to distinguish the wave

types.

We note from Figure 4 some general features and properties. For mstance, gravity

(Class I) modes always have £„ > 0, whether they are westward-propagating or eastward-
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propagating. On the other hand, Rossby (CIeiss II) modes only possess 6n > 0 for westward-

propagating waves; in all other cases the Rossby modes have c„ < 0. Prom the expression

for in (15), for negative or sufficiently small e„ (or large hn) the vertical structures are

"trapped"or "evanescent", whereas for e„ greaterthan about 100 solutions are propagating

with verticalwavelengths less than 100 km. Note that the (1,-1) mode in Figure 4 belongs

to the Rossby mode class for €j^ < 10 but joins the Gravity mode family of curves for

ejj > 10. This is the so-called mixed Rossby-gravity wave. This mode exists for higher

wavenumbers as well. The eastward-propagating (a > 0) gravity modes in Figure 4 are

referred to as Kelvin waves.

The collection of all 6n are the eigenfunctions of Laplace's tidal equation, and are

called Hough functions in honor of the individual who pioneered in their numerical com

putation [Hough, 1897, 1898], Either the £„ or the (where

referred to as eigenvalues of the system. Each eigenfunction/eigenvalue pair constitutes a

"mode". A common nomenclature in identifying modes is to explicitly express s, the zonal

wavenumber, and n, the meridioned index (so-neimed since it provides information on the

number of latitudinal nodes and symmetry characterizing 0„). It is common therefore

to refer to a particular mode as the 0^ mode or just the (s,n) mode, and to add some

information on wave period, as in the "(1,-2) diurnal tide" The (1,-2) diurnal mode might

also be referred to as the "first symmetric trapped diurnal tide" and the "(1,1) mode"

as the "first symmetric propagating diurnal tide" Note also from Figure 4 that the (1,-2).

mode can assume other periods; at the &ee mode value of 6n = 8.4 (hn = 10.5 km) for

a 256 K isothermal atmosphere, the (1,-2) mode would represent the "5-day wave" (g- «

-0.20).

The above experience in locating the "5-day wave" alludes to two possible ways in

which diagrams like Figure 4 can be utilized. For forced modes we generally know the

firequency offorcing, a; by drawinga vertical lineat g- on Figure4, the points ofintersection

define the values corresponding to the modes which comprise the response at that

firequency. This provides information on the vertical structure of the forced response. The
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points ofintersection corresponding to the diurnal tide (§• = - 1.0) are indicated in Figure

4. We see that the response consists of a mixture of trapped (lr2) ) and

propagating ((1,1), (1,2), ) modes, the latter with vertical wavelengths between 15

and 50 km. This means that some localized heating in the lower atmosphere will result in

(a) several modes which propagate to higher levels; and (b) a response partially contained

at the levels of excitation. (The e-folding distance of the latter will depend on the value

of en). The degree to which the response falls into either of these categories is determined

by how well the horizontal and vertical structures of these modes matches that of the

forcing. Examination of the analog of Figure 4 for s=2 (not shown here) would show the

semidiurnal response (§ = -2.0) to consist only of propagating modes (en > 0); Rossby

modes at frequencies higher thsin 212 do not exist.

For free (unforced) modes, we know that Cn = 8.4 for an isothermal atmosphere at

256 K. In Figure 4 the horizontal line defines the free or normal modes that exist for

s=l. Looking down from the points of intersection (labelled "NM"), we can then infer

the frequencies or periods of the normal modes. For s=l, these occur approximately at

periods of 28 hours, 5 days, 8 days, and 12 days, and so on. According to our present

nomenclature, we may refer to the last three of these, respectively, as the (1,-2), (1,-3),

and (1,-4) westward-propagating Rossby modes of zonal wavenumber one. The 28-hour

mode is a mixed Rossby-gravitymode, and is designated (1,-1). At periods of order 1 day

or less, this mode behaves like a Rossby mode; at longer periods, it is gravity-like (i.e.,

propagating) in its chzuracter. Similarly, if one examines the s=3 family of curves (not

shown here), we would find that the mixed Rossby-gravity normal mode for s=3 occurs

dose to § = -.5, corresponding to the "2-day wave".

Table 1 lists some of the more common westward-propagating modes and their nomen

clatures, with approximate values of hn and the corresponding vertical scale in an isother

mal atmosphere calculated from
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. 27r 2itH . ,
A, = — = , (23)

a /7hT ^ ^
yTZ'T

The present nomenclature is consistent with that of Volland [1988] and Chapman and

Lindzen [1970]. In this nomenclature a mode is symmetric about the equator if (n+s) is

even (odd) and antisjrmmetric if (n+s) is odd (even) for gravity (Rossby) solutions. The

mixed Rossby-gravity modes obey the Rossby mode symmetry conditions. For symmetric

modes ©n (and hence all variables 6p^ Sp^ 5T, u), and ti) are mirror images with respect to

the equator, whereas v is antisymmetric; for antisymmetric modes v is symmetric and the

other variables change sign at the equatorial node. Another commonly used nomenclature

used for planetary waves is due to Longuet-Higgins [1968], eind is beised on the value of

(|n| —s). This notation is also provided in Table 1.

Figure 5 illiistrates the 6n for the first three westward propagating &ee Rossby modes

for s=l. Note that these are global scale modes with msiximum amplitudes at middle

and high latitudes. Figures 6 and 7 illustrate the corresponding ©„ for the diurnal and

semidiurnal tides, respectively. Also shown are the velocity expansion functions Un and y„

defined by equations (10) and (11). For the diurnal tide, note the relative concentration of

6„, Unj and Vn at low latitudes for the propagating (hn >0) modes and high latitudes for

the trapped (hn < 0) modes. The propagating modes are alsomore oscillatoryin character.

The semidiurnal wind expansion functions, on the other hand, tend to maximize at middle,

to high latitudes, increasingly so as the meridional index of the mode increases. This

provides the first hint of why wind observations aroimd the mesopause should appear

predominantly semidiurnal in character at middle to high latitudes, and more diurnal in

character at low latitudes (cf. Figure 1).
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Table 1

Nomenclatures and other data for various common westward-propagating waves in the middle and upper
atmosphere. The column (s, n) indicates the nomenclature used in the present work, and in Volland [1988)
and Chapman and Lindzen [1970]. The column (s, |n| —5) indicates the nomenclature, generally restricted
to planetary-wave usage, used by Salby [1981a,b; 1984] and Longuet-Higgins [1968]. Also provided are the
equivalent depth for each mode [Chapman and Lindzen, 1970], /in, propagating-mode vertical wavelengths A,
for anisothermal atmosphere at 256 K, and further descriptors pertaining to the wave. Note that many ofthe
values ofA, inthe real atmosphere vary significantly from the isothermal values given below, especially above
and below the mesopuase where the dTjdz term in Equation (26) (cf. Equation (23)) plays an important
role.

Additional
Wave (5,n) («.|n| -s) hn{km) A,(ibm) Descriptors

Diurnal tide (1,1) 0.6909 27.9 Gravity; first symmetric propagating
Diurnal tide (1,2) 0.2384 15.9 Gravity; first asymmetric propagating
Diurnal tide (1.3) 0.1203 11.2 Gravity; second symmetric propagating
Diurnal tide (l.-l) 803.356 Rotational; first asymmetric trapped
Diurnal tide (1.-2) -12.2703 Rotational; first symmetric trapped
Diurnal tide (1,-4) -1.7581 Rotational; second symmetric trapped

Semidiurnal tide (2.2) 7.8519 311. Gravity; first symmetric (propagating)
Semidiurnal tide (2.3) 3.6665 81.4 Gravity; first asymmetric (propagating)
Semidiurnal tide (2.4) 2.1098 53.8 Gravity; second symmetric (propagating)
Semidiurnal tide (2,5) 1.3671 41.0 Gravity; second asymmetric (propagating)
Semidiurnal tide (2,6) 0.9565 33.4 Gravity; third symmetric (propagating)

5-day wave (1.-2) (1.1) 10.5 Rotational; Rossby; first symmetric
10-day wave (1.-3) (1,2) 10.5 Rotational; Rossby; first asymmetric
16-day wave (1.-4) (1,3) 10.5 Rotational; Rossby; second symmetric
4-day wave (2.-3) (2,1) 10.5 Rotational; Rossby; first symmetric
2-day wave (3,-3) (3.0) 10.5 Mixed Rossby-Gravity; asymmetric

/4-



2.4 Group and Phase Velocity

Let us now return to our "propagating" solution to the vertical structure equation at

the beginning of Section 2.2. If 0 < /i„ < 4/cif, then > 0 and the form of the solution

(16) consists of an upgoing and downgoingwave. Imposition of a "radiation condition" at

the top of our domain determines which term in (16) to retain. The radiation condition

demands that at sufficiently high altitudes the energy is upgoing, i.e., the vertical group

velocity is positive, or C,. > 0. To derive this condition, note that since

2 kH 1 KHgen 1
~ 4 ~ (2fia)2 4

then

da da da^ . da

(cf. Andrews et al., 1987, p.l64). The choice of sign in front of ot must be consistent with

that in (18). FVom Figure 4, we see that > 0 for westward-propagating waves and

^ < 0for eastward-propagating waves. Therefore, to maintain Cgx > 0, in (25) we must

choose +a for westwEirdpropagating waves and —a for eastward propagating waves.

Now, let us see what this implies in terms of phase progression in height and longitude.

Our solution for propagating modes is of the form

gi(«A±ox—at)

The equation aX ±. ax —at = K defines the line of constant phase, e.g., the crest of

the oscillation ii K = 0. At a fixed A, ±ax —at = K', Therefore, for either westward

propagating {a < 0,H-a) or eastward propagating {a > 0, —a) waves wehave x =

i.e., downward phase progression as time increases. (We see now why the downward phase

progressions characterizing Figure 1 are consistent with a wave source at lower heights,

i.e., O3 and H2O insolation absorption, and upward propagation through the mesopause.)
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Continuing, for afixed t we have 3\±ax =K'or x- (x = +±A+i^") implying
westward (eastward) phase tilt for westward (eastward) propagating waves. Therefore,
westward (eastward) phase tilt for westward- (eastward-) propagating waves is consistent
with downward phase progression and upward energy propagation. These are important
features to look for in observational data to verify theoretical interpretations.

2.5 Effects of Temperature Structure, Dissipation, and Mean Winds

In Section 2.3 we showed that free oscillations exist in an isothermal, dissipationless

atmosphere. For To = 256 K, hn and Cn assume values of 10.5 km and 8.4, respectively. In
Section 2.2 we were able to find the points of intersection corresponding to e„ = 8.4, and
to infer the periods and horizontal structures of the various free modes. Presently, we will

discuss in simple terms how the additional complexities of vertical temperature structure,

mean zonal winds, and dissipation modify oiu: concepts about free atmospheric oscillations.

In Section 4 we will examine the effects of more complicated distributions of winds and

teniperatures that necessitate comprehensive ntunerical treatment of the problem.

In a non-isothermal atmosphere, the definition of in (15) is as follows:

2 kH + dH/dx 1
" 4 (26)

Above « 90 km Qf2 > 0, implying propagating solutions, energy leakage into the thermo-'

sphere, and a finite time for the oscillations in the absence of continual forcing. A true

resonance (infinite response) no longer exists. Lindzen and Blake [1972] assumed a mean

distribution of temperature with height, solved (15) and (26) subject to a specification
of tropospheric heating, and examined the response (surface perturbation pressure) as a

fimction of the equivalent depth (hn in (26)). Their result is shown in Figure 8a, and

illustrates a sharp but finite maximtmi at h = 9.95 km. Their solutions also exhibited

amplitude growth and phase tilt with height above 90 km, and nonzero vertical velocities

when To varies with height.
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Lindzen and Blake [1972] also examined the influences of eddy and molecular dissi

pation and surface fnction on the Lamb modes. In this case the response is dependent

on wave period. Figiire 8b illustrates the analog to Figiu-e 8a, except that dissipation is

taken into account. Figure 8c illustrates the additioned effects of including surface friction.

We see that the effects of dissipation and siuface friction are to reduce the magnitude and

significantly broaden the response, with increasing effects as the period becomes longer. It

is also evident that siirface friction dominates over internal dissipation, and is therefore the

determining factor in limiting the "lifetime" of free modes. Lindzen and Blake estimate

lifetimes on the order of 10 to 100 wave cycles for periods between 24 hours sind 2 hours,

respectively.

Salby [1979, 1980] examined the resonance characteristics of Lamb modes in the pres

ence of vertical temperature structure and dissipation, with emphasis on the longer-period

'Lamb' waves (2 to 20 days). His results for the s=l Rossby-gravitymode are illustrated

in Figure 9. He notes the secondary peak occuring near h = 6.4 km, which was discovered

by Pekeris [1937]. This secondary peak is due to the stratospheric temperature duct, and

was apparently overlooked by Lindzen and Blake who only took their calculations down to

h = 8.5 km. This secondary peak disappears in the presence of realistic dissipation [Salby,

1979; see Figure 9]. In honor of the original discoverer, Platzman [1988] has suggested

referring to this as the 'Pekeris' mode.

Lindzen and Blake [1972] did not find any noticeable effects on amplitude and phase

structures due to dissipation below 100 km for Lamb periods < 24 hours. However, for the

longer-period modes examined by Salby, increased amplitude reduction and phase tilt with

height accomp£iny an increase in wave period (see Figure 10). Figure 10 eJso implies that

phase tilt with height in the real atmosphere is not inconsistent with the concept of a free

atmospheric mode. Enhanced vertical leakage of energy should diminish wave lifetimes,

but the dominant effect remains to be surface friction. Salby's work also suggests free

mode lifetimes to be on the order of tens of wave cycles, and also discusses the role of

variations in dissipation in reflection of wave modes, particularly when the doppler-shifted
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frequency becomes small.

The zero-order effects ofnon-zero winds can be ascertained quite easily. Ifwe suppose

thatthe troposphere is characterized by amean eastward wind Usin 9(effectively a uniform

superrotation of the atmosphere), then the <t appearing in our equations

d

at-'-"'

should be replaced by the Doppler-shifted or intrinsic frequency, (td:

d U d —

where ^ = f. In this case, the horizontal scale in Figure 4 is not <7/12. To an

observer on the groxmd, however, the wave frequency would be

= (td + kUy

or equivalently, the observed period is

Toi, =
ao + kU\

For the (1,-2), (1,-3), and (1,-4) normal modes for which c = 8.4, we infer from Figure 4

the corresponding normalized frequencies of about -0.2, -0.12, -0.08, or periods of 5, 8.3,

and 12.5 days, respectively. If we interpret these to be Doppler-shifted frequencies, then

for a nominal value of (7 = 10 ms~^, the ohservtd periods ought to be about 5.6, 10.2,

and 17.1 days. Therefore, we expect the actual atmospheric manifestations of free Rossby

modes to be Doppler-shifted to longer periods. This is why we associate, for instance, the

observed 2-3 week oscillation referred to as the "quasi 16-day wave" [Madden, 1979] with

the (1,-4) Rossby mode possessing an eigenperiod of only 12.5 days.
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3. FORCING OF ATMOSPHERIC TIDES

Atmospheric tides represent an obvious example of ^forced" atmospheric waves for

which we know the wave periods quite well. Limar tides are of course determined by the

period of the moon's apparent rotation around the earth. Here we will be mainly con

cerned with solar or thermally-forced tides, which are excited by the periodic absorption

of solar radiation connected with the apparent motion of the Sun around the Earth. Figiu-e

11 is a schematic of the main points: Various parts of the solar spectrum are absorbed

by tropospheric water vapor (near-IR), stratospheric ozone (UV), and major atmospheric

constituents (O2 and N2) in the lower thermosphere (Figure 11a). (Note that the region

around the mesopause, where most meteor and MF radar measurements provide wind

data, cf.. Figures 1-3, are in a region of "no excitation" At any given height, the day-night

variation of absorbed radiation (and hence heating) givesrise to Fourier components which

are integral subharmonics of a solar day: 24 hours, 12 hours, 8 hours, etc.; Figure lib).

Each of these harmonic components (referred to as the diurnal tide, semidiurnal tide, ter-

diumal tide, respectively) possess a height-latitude distribution (we are ignoring longitude

dependences for the moment). Near the height of maximum heating, the latitudinal distri

bution for a given harmonic might look something like Figure 11c (i.e., maximum at low

latitudes and minimimi at the poles, in concert with the solar zenith angle influence).

Now, given that the 0„ form a complete orthogonal set, we can expand the height-

latitude distribution of heating for a given frequency component, (cf. equation

(7)):

Each "mode" defined by its eigenfunction-eigenvalue pair (©„, h„) now possesses its own

vertical profile of heating Jn(^)' The vertical structure of each mode is determined by

hm and the mean thermal structure of the atmosphere vis-a-vis Equations (15) and

(6).
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Typical examples of Jn{z) for diurnal and semidiurnal tides are provided in Figure

12 [Forbes and Garrett, 1978]. Note that most of the heating goes into the (1,-2) mode

for the diurnal tide, and into the (2,2) mode for the semidurnal tide, as the ©„ for these

modes (cf. Figures 6 and 7 ) most closely correspond with the latitudinal distribution of

heating (cf. Figtire lib).

4. NUMERICAL MODEL RESULTS

4.1 Atmospheric Tides

In Section2 wediscussedthe eigenfunction-eigenvalue problem corresponding to forced

and free atmospheric oscillations in an isothermal, dissipationless atmosphere. By defini

tion "separabiHty" existed, so that eachmode possessed its own verticsJ structure. (Indeed,

use of the term "mode" implies separability). SepairabiHty of height and latitude depen

dences also exists in a non-isothermal atmosphere, and additionally for special treatments

ofheight-dependent dissipation [Lindzen and McKenzie, 1967; Lindzen, 1970]. However, in

the joint presence of latitude-dependent rotation and vertical diffusion of heat and momen

tum, or in the presence of latitude dependent mean winds, the equations for an oscillation

with specified frequency and zonal wavenumber are nonseparable. First of all, this neces

sitates a numerical approach to the problem; secondly, strictly speaking, this precludes

reference to "modes" particularly in the mesosphere and lower thermosphere. However,-

it is commonplace to use modal terminology nontheless, as many observed features of

prominent oscillations exhibit characteristics very similar to what would be expected on

the basis of "classical" theory. In fact, it is commonplace to decompose the thermal forc

ing in mmierical models into Hough modes (as in Figure 12), even though the solution is

nonseparable; and in fact, the solutions are sometimes decomposed into Hough modes to

facilitate interpretation of the results. We will now breifly review some of these numerical

models.

Forbes and Garrett [1979] review basically two t3rpes of numerical models which take
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into account dissipation, mean winds, and other processes in simulations of middle and

upper atmosphere tides. The first genre neglect eddy and molecular dissipation, but in

clude mean winds and meridional temperature gradients, Newtonian cooling, and perhaps

a Rayleigh friction (linear damping) term to filter out small-scale noise or to facilitate

application of upper boundary conditions. Dispensing with diffusion allows one to derive a

single second-order partial differential equation in height and latitude for the perturbation

geopotential [Lindzen and Hong, 1974; Aso et al., 1981; Walterscheid et al., 1979a,b; 1980;

Vial, 1987; Forbes and Vial, 1989]. In the context of the solution of these nonseparable

equations, the terminology of "mode coupling" has arisen. This refers to the generation

of tidal modes (determined through an orthogonal expansion of the calculated response)

which are not forced directly by thermsJ excitation, but which arise because of the non-

separability of the governing equation. For instance, if only the (2,2) mode is excited

in these models, the response at say 90 km consists of many modes ((2,2), (2,3) , )

due to the "distorting" effects of the mean wind distribution. In the above models the

(2,4) mode appears to receive about equal contributions from direct thermal forcing and

mode coupling via the (2,2)-mean wind interactions which tend to add in phase. On the

other hand, for the (2,3) mode the effect of mode coupling is to interfere with the directly

forced component and thereby reduce the (2,3) response above the level of ozone heating.

In the case of (2,5), excitation appears to arise almost exclusively due to direct thermal

forcing (mode coupling is weak). More recent studies by Forbes and Hagan [1987] and

Vial [1986] address the diurnal tide, and utilize a Rayleigh friction (linear damping) term

to parameterize turbulent diffusion of momentvun. For the dominant diurnal propagating

(1,1) mode, latitudinal broadening (or leakage to high latitudes) due to dissipation near 90

km can be viewed as a coupling into the trapped or evanescent (1,-2) mode, whereas the

asymmetries in the modified modal shape induced by the global mean wind distribution

(particiilarly around solstice) can be interpreted as a coupling into the (1,2) and (1,-1)

asymmetric modes.

At the next hierarchal level of modeling pertaining to atmospheric tides, Forbes [1982
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a,b] includes eddy and molecular diffusion of momentum and heat so as to properly address

the structtiral modification of tides in the 80 -150 km region and their penetration to higher
altitudes. Xhis req^uires numerical solution of the four coupled partial differential e(}uations
in the three velocity components and temperature, as opposed to a single equation for the

geopotential as in the above studies. Forbes [1982 a,b] provides explicit simulations from

the surface to 400 km for the solar diurnal, solar semidiurnal, and lunar semidiurnal tides

due to realistic thermal and gravitational forcing, as well as normalized thermospheric

extensions ofsolar semidiurnal modes above 80 km for use in the fitting, extrapolation and

interpolation of observational data [Forbes and Hagan, 1982].

Illustrations of amplitude and phase vertical structures for the solar semidiurnal and

diurnal tides from the Forbes [1982 a,b] model are shown in Figures 13 and 14, respectively.

InFigure 13, note therelatively long vertical wavelength characterizing the response below

50 km; this is consistent with most of the heating going into the long-wavelength (2,2)

mode (Figure 12; Table 1); above about 50 km, the wavelength decreases, due to the

increased presence of short-wavelength modes induced by "mode coupling" due to the

strong mesospheric jets. The region between 70 and 90 km is a region ofevanescence for

the (2,2) mode, due to the combined effects ofits large hn and the negative temperature

gradient (cf. equations (15) and (6)). However, in this region the higher-order modes

are growing exponentiedly with height, and soon begin to dominate the solution in the

lower thermosphere. However, as molecular viscosity begins to dominate in the 120 - 150-

km region, these shorter vertical wavelength modes (cf. Table 1) are more susceptible to

dissipation, and the longer wavelength modes begin to dominate at higher altitudes. In

the upper thermosphere, molecular diffusion of heat and momentum are so efficient that

it is difficult to maintain vertical shears in the wind and temperature fields, and the tidal

fields asymptote to constant values above about 200 km.

The situation is similar for the diurnal tide, illustrated in Figure 14. Note that at

high latitudes (60® in Figure 14) the phase is more or less constant with height, consistent

with the dominance of trapped modes whose maxima are at high latitudes (cf. Figure 6).
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At low latitudes the solution is dominated by the (1,1) mode, with a vertical wavelength

of order 30 km (cf. Table 1).

At this point we should comment on the characteristics noted in reference to Figure

1 in Section 1. In Section 2.4 the downward phase progression with height was shown

to be consistent with a positive (upward) group velocity, consistent with the excitation

sources being located somewhere below 80 km. At high latitudes, the tidal fields near the

mesopause Eire dominated by the semidiurnal propagating modes, particularly higher order

modes than (2,2);. since there is relatively little in-situ heating, the diurnal tide is weak

at latitudes greater than about 40®; furthermore, the higher-order semidiurnal tides are

growing exponentially with height in this regime where the (2,2) mode is quasi-evanescent.

This accoimts for the predominance of the semidiurnal tides at Saskatoon in Figure 1.

At Townsville (19®S), much closer to the equator, the propagating semidiurnal tides are

relatively small, and the diurnal tide enjoys its maximum amplitudes (cf. Figure 6).

4.2 Planetary Waves

Although the above mode coupling effects are important in the context of atmospheric

tides, the tidal wave phase speeds are generally large compared to the mean flow speed U\

the resulting effects do not represent drastic consequences. In effect, these "fast" waves

do not "see" the relatively slow background flow. However, as the wave periods increase

from 2 to 20 days for planetary (Rossby) waves, the phase speeds get smaller and the

effects of mean winds assume much greater importance. The above arguments can be

made more quantitative by noting the Doppler-shifting effects of mean winds that appear

when assuming solutions of the form

at a sin 9 OA

where h —75^ and the zonal phase speed is Cph = p For the migrating tides a = afi,

so that Cph = Hasin^ or about 464 ms~^ at the equator and 232 ms'^ at 60® latitude. If

T is the period in days, then for the westward propagating planetary waves,
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_ Ha sin 9
Cp" •—^

and the above tidal phase speeds are reduced by the factor aT. For the 8=1 10-day wave

Cph « 23 ms"^ at 60® latitude, and for the 8=3 2-day wave Cph « 39 ms~^. In either

case, and for other planetary waves as well, summer easterlies of order -20 to -60 ms~^ can

obviously have drastic effects on the propagation of planetary waves. When the condition

= —Cph + U = 0 is satisfied, we refer to this as a critical line, and anticipate that this

must imply drastic effects (N.B. for stationary planetary waves Cph = 0, andthis condition

reduces to the zero wind line). Moreover, when <T£) becomes small we intuitively expect

the wave to be more sensitive to dissipative processes. Below, we will examine the role of

zoned mean winds in greater detail.

Salby [1982 a,b] has utilized the first genre ofmodel described above to investigate the

behavior ofplanetary waves in the presence of realistic background winds. In this work he

forced the lower boundary with a constant vertical velocity with respect to latitude (with

a change of sign at the equator for asymmetric forcing), and examined the response as

a function of frequency, with the zonal wavenimiber and background wind configuration

fixed. An example of his results for s=l westwBord propagating modes is illustrated in

Figure 15. Note that the response is very structured, and differs considerably between

typical equinoctial and solsticial conditions. These results reflect the extreme sensitivity

of the planetary wave response to the background wind field. Note, however, that the

responses tend to maximize near periods of 5, 9, and 16 days. As Salby shows, the

tropospheric and lower stratospheric responses near these periods are structurally similar

(i.e., latitude dependence of amplitude and phase) to what we would expect on the basisof

"classical th^ry" presented in Section 2. Therefore, it appears that even in realistic wind

configtirations that it is valid to speak in terms of a resonant response of the atmosphere,

and to associate these responses with the free Rossby modes of Laplace's tidal equation.

However, above the lower stratosphere, the atmospheric response is further complicated
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by high wind speeds and shears. We will now briefly discuss some of these effects.

Dickinson [1968] has performed an analytic investigation of the vertical propagation

of stationary planetary waves through a background wind field consisting of significant

vertical and horizontal shears. This theory is applicable to the long-period oscillations

investigated here, and provides a firamework for interpreting the results. Dickinson's work

represents an extension of Chamey and Drazin [1961], who limit their analysis to a mean

zonal wind independent of latitude with constEuit Coriolis parameter. Chamey and Drazin

conclude that vertical propagation of stationary planetary waves is only possible in westerly

wind regimes, when the westerly wind speed is below some upper limit (sometimes referred

to as the ^'Chamey-Drazin critical speed"). The basic idea of Dickinsons's work can be

extended to traveling planetary waves if we simply replace "westerly wind" {U > 0) with

*Svesterly wind with respect to the wave" {{XJ —Cph) > 0). The main conceptuEil results

of Dickinson [1968] are stmmiarized in his Fi^re 1, which is reproduced here as Figure

16. Assuming winter solstice conditions and a mid-latitude source of wave energy, vertical

propagation of planetary waves is affected as follows. At middle latitudes, the westerly jet

is sufficiently strong to preclude efficient propagation above the stratopause. Poleward of

the westerly jet, a wave guide is formed which traps waves between the strong westerlies

and the geometric pole; Dickinson refers to this as the po/ar ca^ wave guide. This wave

guide provides a ducting channel through which planetary waves can penetrate to the

mesosphere and lower thermosphere. (A similar ducting chsuinel can in principle be realized

between two regions of high westerly wind separated by weak westerlies). Planetary wave

disturbances can also be dif^acted into an equatorial wave guide formed between the

westerly jet of the winter hemisphere and the zero-wind line (or critical line in the case

of traveling waves) transition to stratospheric summer easterlies. Dickinson's analysis

indicates the planetary disturbances would be absorbed rather than reflected along such

zero-wind lines, providing an impediment to significant vertical penetration (i.e., to the

mesopause). Dickinson therefore suggests that whatever stationary (and therefore long-

period) planetary wave disturbances might be realized at the equatorial mesopause would
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probably originate from leakage connected with the polar wave guide. It seems reasonable

to assume, however, that the degree of attenuation is dependent on the strength of the

westerly jet, and the separation distance between the jet and the zero-wind (or criticail)

line.

A numerical simulation [Salby, 1981c] of the 2-day wave under Northern Hemisphere

winter solstice conditions is presented in Figure 17. This is a case of 'moderate' mean

wind effects, i.e., not so extreme as the s=l 10-day and 16-day waves. Nevertheless,

the tendency for exclusion of the solution from the strong winter westerly and summer

easterlyjets is evident. In this case the equatorial waveguide is very broad (wide separation

between the critical line in the summer Hemisphere and the winter jet maximum). There

is also a tendency for the wave maxima to shift to the summer Hemisphere, i.e., to the

region of weak westerlies with respect to the wave. Note that the equatorial amplitudes of

meridional wind at 35®S are of the same order (« 20 —30msas the episodically large

2-day wave amplitudes observed during local summer over Adelaide, S. Australia (Figure

3). Therefore, Figure 17 provides some measure of the true height/latitude temperature

and meridional wind distributions for the episodically large 2-day wave.

5. CONCLUDING REMARKS AND OUTLOOK FOR THE FUTURE

This tutorial has sought to expose the non-dynamicist to the fundamental theory,

observational evidence, and numerical modeling results pertaining to tides and planetary

waves in the mesosphere and lower thermosphere. At this point, there remains much to

be done. While radars are capable of providing long time series and therefore identifying

the presence of planetary wave periodicities, they are distributed too sparsely to provide

adequate information on zonal wavenimibers. On the other hand, satellites are now capable

of providing good spatial coverage with marginally useful tempored information. Moreover,

the region between 100 and 150 km is practiceJly devoid of any measurements capable of

delineating planetary waves. This combination of capabilities and circumstances represents

an ideal situation for joint ground-based/satellite observations of the mesosphere/lower
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thermoaphere (MLT), a task promised to be accomplished by the NASA TIMED Mission.

There is alsoconsiderableroom for theoretical and numericalmodeling advances. The

question of nonmigrating (i.e., longitude-dependent) diurnal tides needs to be addressed,

and the work of Forbes and Groves [1987] improved upon with greater attention to various

tropospheric excitation sources. The pioneering work of Salby [1981a,b,c] needs to be

extended, particularly with regard to inclusion of more realistic mean wind distributions

and dissipative processes, both of which are essential to understanding the propagation

characteristics of planetary waves in the mesosphere and lower thermosphere. The possible

in-situ generation of Rossby-like modes in the MLT regime, possibly due to solar radiation

or joule heating variations, or the periodic filtering of gravity waves originating in the

lower atmosphere and depositing heat and momentum in the upper atmosphere, warrant

investigation. Some initial work on gravity-type normal modes of the thermosphere has

been accomplishedby Larsen and Mikkelesen [1987], but no work has been done on possible

Rossby-like normal modes of the thermospheric regime.

As a potential influence of planetary waves on the MLT region, even when they may

not penetrate beyond the mesosphere, consider Figure 18. This is a plot of power spectral

densities constructed firom daily values of the semidiurnal tidal amplitude derived &om

wind observations near 95 km over Obninsk, Russia, during January through February,

1979 (cf. Figure 2). We see that the semidiurnal tide is modulated at periods near 10 days,

and 20 days, possible due to interactions with mean winds of these periodicities in the

mesosphere. The modulations are significant; the 10-day modulation amoimts to about

±7 ms"^ about a mean value of « 20 ms~^ in the semidiurnal wind amplitude.

Heretofore, studies of tides and planetary waves have considered these wave compo

nents to be linearly independent. Besides improving on our modeling and experimental

capabilities in this directionj we must now pursue nonlinear interactions between these wave

components [cf. Teitelbaimi and Vial, 1991], and with the mean dynamics, thermod3rnam-

ics, and compositioned state of the MLT region. The data in Figure 18 demonstrate the
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potential influence ofplanetary waves on the day-to-day variability ofatmospheric tides,

and underscores the importance of continuous wind and temperature observations. New

methods of data analysis must also be explored, such as bispectral estimation which may

provide greater insight into the interactions between waves. Finally, considerable progress

will not be made imtil acombined ground-based and satellite-based effort is launched, hope

fully inconnection with the TIMED mission, to provide the necessary space-time coverage

to disentangle the wavenumber/frequency spectra oflarge-scale waves in the MLT regime.
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FIGURE CAPTIONS

Figure 1. Height-local time contours depicting average northward winds during the period

March 18-27, 1979, over Townsville, Australia (19®S, 147®E) and Saskatoon, Canada

(54®N, 107®W), as meMured by the spaced antenna drift method. Data courtesy of

Prof. R.A. Vincent and Prof. A.H. Manson.

Figure 2. Power spectrum of daily mean meridional (dashed line) and zonal (solid line)

winds observed near the mesopause over Obninsk, Russia (54®N, 38®E) for January

through February, 1979. Data co\irtesy of Dr. Yu.I. Portnyagin.

Figure 3. The amplitude of the quasi two-day wave for January, 1984, through January,

1991,near the mesopause over Adelaide, S. Australia (35®S, 138®E). These amplitudes

were determined using a complex demodulation procedure, with an effective bandpass

of 44 to 53 hotirs. Meridional winds are shown in the top panel with the zonal winds

below. From Harris [1993].

Figure 4. Eigenvalues cj of wave modes of zonal wavenumber s=l vs. normalized frequency

Waves with positive (negative) frequencies propagate to the east (west). The

dots corresponding to = 0 denote the so-called Rossby-Haurwitz waves. The dots

corresponding to "NM" refer to the normal modes (e^ w 8.4). The vertical series

of dots at § = —1.0 define the cj, for the diurnal tide. The eastward-propagating

gravity-type (Class I) modes Me the Kelvin Waves. Figure and caption adapted from

VoUand [1988].

Figure 5. Hough modes corresponding to the first three free Rossby modes of zonal

wavenumber one. Adapted from Walterscheid [1980].

Figure 6. Normalized expansion functions for the solar diurnal tide. Top: Hough Function.

Middle: Eastward wind expansion function. Bottom: Northward wind expansion

function. Solid line, (1,1); dashed, (1,-1); dashed-double dot, (1,2); dashed, (1,-2);

dahsed-dot, (1,-4). From Forbes [1982a].

Figure 7. Same as Figure 6, except for the semidiurnal tide. Dashed line, (2,2); solid,

33



(2,3); dotted, (2,4); dashed-dot, (2,5); dashed-double dot, (2,6). From Forbes [1982b].

Figure 8. JVactional response in surface pressure \Splpo\ as a function of equivalent depth,

(a) Without dissipation and without surface friction; (b) With dissipation and without

surfacefriction; (c) with dissipation and with surface friction. FVom Lindzen and Blake

[1972].

Figure 9. Total energy as a function of ^ ^ for the s=l mixed Rossby-gravity mode,
with dissipation (solid line) and without dissipation (dashed line). The secondary

peak for the conservative case (deished line) is due to buoyancy trapping at upper

levels [Salby, 1979]. The absence of a secondary peak in the presence of dissipation

is due to the reduced energy flux reaching these levels &om the surface [Salby, 1980].

Figure and caption adapted from Salby [1980].

Figure 10. Normalized velocity magnitude (top) and phase (bottom) for the lowest order

s=l westward propagating waves in the presence of dissipation. The notation n-m

= 0,1,2,3 refers, respectively, to the mixed Rossby-gravity mode, and the "5-day",

"10-day", and "16-day" waves. Vertical structures for the true Lamb mode are shown

for comparison. FVom Salby [1980].

Figure 11. Schematic of vertical (left), latitudinal (top) and diurnal (bottom) variations

in tidal heating.

Figure 12. Vertical profiles of diurnal (top) and semidiurnal (bottom) heating,

where x = —/n(p/po), due to insolation absorption by ozone and water vapor, cor

responding to various solar tidal modes. The units are Joules kg~^ sec"^. Adapted

from Forbes and Garrett [1978].

Figure 13. Amplitude (left) and phase (right) for solar semidiurnal eastward winds at 0®,

±30®, and ±60® latitude for December solstice conditions. From Forbes [1982b].

Figure 14. Same as Figure 13, except for the solar diurnal tide. Prom Forbes [1982a].

Figure 15. Simulated atmospheric response as a function of normalized frequency for

s=l westward propagating waves, for typical solstice and equinox background wind
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conditions. From Salby [1981b].

Figure 16. Schematic of propagation paths for stationary planetary waves excited in the

mid-latitude N. Hemisphere during winter conditions. From Dickinson [1968]. For the

traveling planetary waves, the barrier represented here by the zero wind line would

be replaced by the frequency-dependent critical line; for periods greater than about

10 days and small zonal wavenumbers, the critical line is close to the zero wind line,

and for progressively smaller periods the critical line recedes up into the mesosphere

and towards high latitudes.

Figure17. Simulated meridional wind (ms~^) and temperature (K) as a function of height

and latitude for the quasi two-day wave. Typical December solstice conditions are

assumed. FVom Salby [1981c].

Figure 18. Power spectrum of daily amplitudes of semidiurnal meridional wind observed

near the mesopauseover Obninsk, Russia (54®N, 38®E) for January through February,

1979. Data courtesy of Dr. Yu.L Portnyagin.

35



100

96 r

s: 92

I
o

§ B8

84

30

TOUNSVILLE (19S. 147EJ

T—r—I—I—I—I—I—I—I—I—r

an xP40 ^^ 20

8 12 16 20

UNIVERSAL TIME (HRS)

SASKATOON (54N, 107W)

W

4 8 12 .16 20 24

UNIVERSAL TIME IHRS)

1



t
o

t
n 5 I

"D m 5 O D

c
n

—

c
n

a ^
ro

w
O I>

0
c
n

C
O

o

PO
W

E
R

SP
E

C
T

R
A

L
D

E
N

SI
T

Y
(1

03
)



^30-

•o 50

t 30-
< 20-

Meridional

Zonal

1984 1986 1988

Time

1990

3



4

-1

PERIOD (days)
10 100 100

Class I

-2 -3-4-5-6-7
I 11/11
• I J • • '
• t 4 • f •
• I I I I •

Class II

rTT

Class I

n=1

Internal Waves

External Waves

S=1 Class II
-5,-6

-0.1 -0.01 0.01 0.1 1

NORMALIZED FREQUENCY, g/Q

12S07-2, S/93. wg

1

3

30

100

N

3



-r-CNJ

©'
LI.

O
LU
Q
Z)
t
_l
CL

<

1

0

0 10 20 30 40 50 60 70 80 90

LATITUDE

.©

12507-4,4/93, wg



bJ

O
liJ
N

-I
<
2
(r
o
z

DIURNAL EXPANSION FUNCTIONS

30 60

DEGREES LATITUDE

4



SEMIDIURNAL EXPANSION FUNCTIONS

90 60

DEGREES LATITUDE

7



OL

CO

10

10

10®

' z 1 —1 T 1 1 1

' (.0.) :

-

> _
-

1_ /

LJJ.IIII1I

——1 1 1 « X. 1
io-»

v Equivolent Deptti (km)

24 HR

CO I0-'

8.5 9.5 10.5 11.5

Equivolent Deptti (km)

10'

10'

8.5 95

T 1 r

(c) E

• « I HR.

— = 6 HR.

— « 24 HR.

J L

10.5 11.5

h Equivalent Deptti (km)

S



CM
13

O

.CL

10^

10V

10®

10^

10^ h

^ I02

lo' -

10°

10"' -

10-2 tr

I |i 11111111| 11

•Total Energy

Conservative

-3.0 -2.0 -1.0 0

e

nIi1111111111

1.0 2.0 3.0



I I I II11

n-m = 3 2/1 0/ /Lamb

VELOCITY MAGNITUDE

[Conservative/

VELOCITY

PHASE

« f 1 t > i « I 1 I 1 I » i I

-10 0 10 20 30 40 50 60 70 80 90 100

DEGREES

10



H D > r
~ I m § z Q

H
E

IG
H

T
(k

m
)

T
ID

A
L

H
E

A
T

IN
G

I
I

I
I

I
I

I
I

3
3

2
-

C
O

^
C

O

T
ID

A
L

H
E

A
T

IN
G



OZONE
JXiZi .005 .0075

Pb3 .006 .009

WATER VAPOR

DECEMBER SOLSTICE

♦d.l) ♦0.-2)

-(1.3) (1,-4)
(l.-l)

OZONE
.001 .002 .003 .004

DECEMBER SOLSTICE

ao .001 JX3Z .003 .004 .005

WATER VAPOR

It



Itf
ahplituoe

HESTERLT Ml NO

SOLRR OIURNRL
eouiNox

X 0 oec. LATITUDE

O 18 OEC. LATITUDE
• 42 OEO. LATITUDE

O 60 OEC. LATITUDE

phase

400

360

320

260

240

- 200

160

120

60

40

20 24

/3



itf
AHPLITUDE

HCSTERLT WIND

SOLAR SEni-DIURNAL

EQUINOX

X 0 DEC. LPTITUOE

O 16 DEC. LRTITUOE

m 42 DEO. LATITUDE

a 60 OEO. LATITUDE

phase

400

360

320

260

- 240

200

160

120

80

40

10 12

14-



o

I O rv
)

0
0

o Kd

N
p

m
N

)
O m J
3

m O m

o O
)

O
L

l
J<

>^
3

Q S
b C

D I o o -p
^

R
E

S
P

O
N

S
E

o
O

C
O

o
O

C
JI

O
O

)

Ill
lll

lll
Ill

lll
lll

Ill
lll

lll
1

ll
ll

ll
l

—

0
)

II

%

<
—

—
-

c
o

rn
o

-Q
=

=
i3

-'
CO

=
-

/3
?

nt
.I

D
r
-
'X

Q
o

—

^
CD

>
r

t f • • • • •

—

• • • •
%

•
•

•

^—
"—

-
—

— —

lll
lll

l
Il

lll
lll

l
li

ii
ii

ii

e
n

O
)

"D m 5 O O 0
)

C
O



100-

2

ui
o

= 50-

-I

POLAR WAVE 20
GUIDE RAY \ V I

ZERO
WIND UNE

ABSORPTION

'EQUATORIAL

WAVE GUIDE RAY

JL ENERGY SOUqCE

60 TTT
WINTER LATITUDE SUMMER



-90

MERIDIONAL VELOCITY

temperature

•60 -30 0 30

LATITUDE {degrees)
eo »0

i7



I s % f

"D m 3 O D O
ro

0
)

o

C
O

C
O

o

P
O

W
E

R
S

P
E

C
T

R
A

L
D

E
N

S
IT

Y

o
>

0
0

o
r
o

o
o

o
o

o
o

o
o


