1992 CEDAR Workshop Boulder, CO June 21-26, 1992

Tutorial Lecture

by Raymond Roble National Center for Atmospheric Research

Overview of the Thermosphere/Ionosphere General Circulation Model (TIGCM)

NCAR THERMOSPHERE/IONOSPHERE GENERAL CIRCULATION MODEL (TGCM)

- Primitive equations of dynamic meteorology adapted to thermospheric heights
- Horizontal grid 5° latitude x 5° longitude, geographic
- Vertical grid -- 25 constant pressure surfaces, 2 grid points per scale height, 95 to 500 km
- Time step 240 or 300 S

INPUT

- Solar EUV and UV radiation 5 to 250 nm
- Empirical ionospheric convection and auroral particle precipitation models

LONG RANGE MODEL DEVELOPMENT

$$\overline{Z} = -\int_{M} \frac{P}{P_{c}}$$
THERMODYNAMIC EQUATION
$$P_{z} = 5 \times 10^{-7} \text{ mb}$$

$$\frac{\partial T}{\partial t} = \frac{ge^{z}}{P_{0}C_{p}} \frac{\partial}{\partial z} \left\{ \frac{K_{T}}{H} \frac{\partial T}{\partial z} + \frac{K_{E}H^{2}C_{p}\rho}{P_{r}} \left(\frac{g}{C_{p}} + \frac{1}{H} \frac{\partial T}{\partial z} \right) \right\}$$
Molecular thermal conduction
$$-\underline{V} \cdot \nabla T - W \left(\frac{\partial T}{\partial z} + \frac{RT}{C_{p}m} \right) + \frac{(Q-L)}{C_{p}}$$
horizontal vertical advection and adiabatic expansion
heat sources and radiative losses

Upper Boundary Conditions

No heat source or heat sink at upper boundary

Lower Boundary Conditions Temperature specified $\frac{\partial T}{\partial z} = 0$

 $T = T_s(z = -7)$

THE EASTWARD MOMENTUM EQUATION

.

$$\frac{\partial u}{\partial t} = \frac{ge^{z}}{P_{0}} \frac{\partial}{\partial z} \left(\frac{\mu}{H} \frac{\partial u}{\partial z} \right) + \left(f + \frac{u}{r} \tan \phi - \lambda_{zy} \right) v$$
$$-\lambda_{zz} u - \mathbf{V} \cdot \nabla u - w \frac{\partial u}{\partial z} - \frac{1}{r \cos \phi} \frac{\partial \Phi'}{\partial \lambda} + \left(F_{\lambda} + \lambda_{zy} v_{I} + \lambda_{zz} u_{I} \right)$$

THE NORTHWARD MOMENTUM EQUATION

$$\frac{\partial v}{\partial t} = \frac{ge^{z}}{P_{0}} \frac{\partial}{\partial z} \left(\frac{\mu}{H} \frac{\partial v}{\partial z} \right) - \left(f + \frac{u}{r} \tan \phi - \lambda_{yx} \right) u$$
$$-\lambda_{yy} v - \mathbf{V} \cdot \nabla v - w \frac{\partial v}{\partial z} - \frac{1}{r} \frac{\partial \Phi'}{\partial \phi} + \left(F_{\phi} + \lambda_{yy} v_{I} - \lambda_{yx} u_{I} \right)$$

THE CONTINUITY EQUATION

$$\frac{1}{r\cos\phi}\frac{\partial}{\partial\phi}\left(v\cos\phi\right) + \frac{1}{r\cos\phi}\frac{\partial u}{\partial\lambda} + e^{z}\frac{\partial}{\partial z}\left(e^{-z}w\right) = 0$$

THE HYDROSTATIC EQUATION

$$\frac{\partial \Phi}{\partial z} = \frac{RT}{m}$$

Opper Boundary Conditions

No sources of momentum
$$\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = \frac{\partial w}{\partial z} = 0$$

at upper boundary

Lower Boundary Conditions

Specified
$$U = U_s (z = -7)$$

 $V = V_s (z = -7)$
 $\Phi = \Phi_s (z = -7)$

ION DRAG PARAMETERS

$$\lambda_{xx} = \lambda_1 \left(1 - \sin^2 \delta \cos^2 I \right)$$
$$\lambda_{yy} = \lambda_1 \left(1 - \cos^2 \delta \cos^2 I \right)$$
$$\lambda_{xy} = +\lambda_1 \sin \delta \cos \delta \cos^2 I + \lambda_2 \sin I$$
$$\lambda_{yx} = +\lambda_1 \sin \delta \cos \delta \cos^2 I + \lambda_2 \sin I$$

where δ is the magnetic declination angle, I is the magnetic dip angle and

$$\lambda_1 = \frac{\sigma_P B^2}{\rho} \qquad \qquad \lambda_2 = \frac{\sigma_H B^2}{\rho}$$

where σ_P and σ_H are the Pedersen and Hall electrical conductivity, respectively, B is the strength of the magnetic field = $0.282 \sqrt{1 + 3 \cdot \cos^2 \phi_m}$ Gauss, ϕ_M is the magnetic colatitude, and ρ is the TGCM density.

JOULE HEATING

The Joule heating for displaced poles is

$$Q_J = \underbrace{\lambda_{xx} (U_I - U_n)^2}_{Xy} + \underbrace{\lambda_{yy} (V_i - V_n)^2}_{Yy} + (\lambda_{xy} - \lambda_{yx}) + \underbrace{(V_i - V_n)^2}_{Yy} + \underbrace{(\lambda_{xy} - \lambda_{yx})}_{Yy} +$$

where U_i and V_i are the geographic zonal and meridional ion drift velocities defined by the Heelis *et al.* (1982) empirical model and U_n and V_n are the zonal and meridional neutral wind components determined at a given time step in the TGCM.

EQUINOX

F10.7~ 150

Jec Km.

EQUINOX Fio.7 = 150

SOLAR HEATING ONLY

IONOSPHERIC

POTENTIAL (VOLTS)

.

 $\overline{\phi}_{2}(97 \text{ fm})$

Hough	FUNCTION	<u>s</u> (5	EMI-DIU	RNAL)
2-2 2-3 2-4 2-5 2-6	SF A Fi	PECIFY ND P DRBES LTC	AMPLITO HASES & VIAL (S - Stu	UDES 1991) DIES
Recently	ADDED	Diu	RNAL	TIDE
/ EORBES	S ET. AL.	1992)	

MAJOR CONSTITUENT TRANSPORT

The three major neutral constituents of the thermosphere - O_2 , O, and N_2 - are considered and used to define the mass maxing ratio of constituent i as

$$\psi_i = n_i m_i \left(\sum_{j=1}^3 n_j m_j\right)^{-1},$$

where n_i is the number density of the *i*th species, with i = 1, 2 and 3 corresponding, respectively, to O_2 , O, and N_2 ; m_i is the mass of the *i*th species. We furthermore define mixing ratios of O_2 and O as the vector

$$\underline{\psi} = \begin{pmatrix} \psi_{O_2} \\ \psi_O \end{pmatrix}$$

and therefore by definition the N_2 mixing ratio is obtained by $\psi_{N_2} = 1 - \psi_{O_2} - \psi_O$.

$$\frac{\partial}{\partial t} \psi = -e^{z} \tau^{-1} \frac{\partial}{\partial z} \left[\frac{\overline{m}}{m_{N_{2}}} \left(\frac{T_{\infty}}{T} \right)^{0.25} \underline{\alpha}^{-1} L \psi \right]$$

$$molecular Diffusion$$

$$+ e^{z} \frac{\partial}{\partial z} \left[K(z)e^{-z} \left(\frac{\partial}{\partial z} \psi + \frac{1}{\overline{m}} \frac{\partial \overline{m}}{\partial z} \right) \right] - \left[\underline{V} \cdot \nabla \psi + w \frac{\partial}{\partial z} \psi \right] + \underline{S} - \underline{R} .$$

$$EDDY \quad Diffusion$$

$$\int HeR. + NER. ADY \quad Sauraci: + Sink$$

Upper Boundary Conditions

At the upper boundary condition, diffusive equilibrium is assumed so that $L \ \underline{\psi} = 0$.

Lower Boundary Conditions

$$\frac{\partial}{\partial z} \psi_2 = \psi_2 \qquad \psi_1 + \psi_2 = \text{constant}$$

S - PHOTO DISSOCIATION (EUV + SRC)
R - C + O + M - O₂ + M

2

UT = 12.00

120 KM

Z = -4.0

M/s

M/5

Neutral-Neutral Constituent Reactions and Rates used in the Model.

Reactions

$N(^{4}S) + O_{2}$ $\beta_1 \longrightarrow NO + O + 1.4eV$ $N(^{2}D) + O_{2}$ $\longrightarrow \beta_2 \longrightarrow NO + O(^1D) + 1.84eV$ $\beta_3 \longrightarrow N_2 + O + 2.68 eV$ $N(^{4}S) + NO$ NO_x $N(^{2}D) + O$ $\beta_4 \longrightarrow N({}^4S) + O + 2.38eV$ $N(^{2}D) + c$ $\beta_5 \longrightarrow N(^4S) + e + 2.38eV$ $\beta_6 \longrightarrow N_2 + O + 5.63 eV$ $N(^{2}D) + NO$ $N(^2D)$ $\longrightarrow \beta_7 \longrightarrow N(^4S) + h\nu$ $\longrightarrow \beta_8 \longrightarrow \mathcal{N}({}^4S) + O$ NO + hv $NO + k\nu|_{Lu=\alpha}$ $---\beta_{2} ---- \rightarrow$ $NO^+ + e$ $\gamma_{\mathbf{k}}$ $O_2 + O$ 0 + 0 + MC_X γ_2 $\cdot \quad O + O_2 + M$ $O_3 + M$

MINOR CONSTITUENT TRANSPORT

$$\frac{\partial \psi_m}{\partial t} = e^{-z} \frac{\partial}{\partial z} D_m \left(\frac{\partial}{\partial z} - E_m \right) \psi_m$$

Molecular and Thermal Diffusion

$$-\left[\underbrace{V} \cdot \nabla + \omega \frac{\partial}{\partial z} \right] \psi_m + S_m + e^z \frac{\partial}{\partial z} e^{-z} K_E \left(\frac{\partial}{\partial z} + \frac{1}{\overline{m}} \frac{\partial \overline{m}}{\partial z} \right) \psi_m$$

$$\underbrace{\text{Transport}}_{\text{Sink}} \qquad \underbrace{\text{Eddy Diffusion}}_{\text{Eddy Diffusion}}$$

where

 E_m = gravitational forces + thermal diffusion + frictional interaction with major species

Upper Boundary Conditions

Diffusive Equilibrium:

$$\left(\begin{array}{c}\frac{\partial}{\partial z}-E_m\end{array}\right)\psi_m=0$$

Lower Boundary Conditions

- $N(^{4}S)$ Photochemical Equilibrium
- NO Specified Mass Mixing Ratio

GLOBAL AVERAGE MODEL

1-D

 $\Delta T(K)$

EULERIAN IONOSPHERE

O⁺ EQUATION WITH HORIZONTAL AND VERTICAL TRANSPORT

 $\frac{\partial n}{\partial t} - Q + Ln = -\nabla \cdot n\underline{V}$ $\beta = ALONG \overline{B}$ J = PERPENDICULAR TO \overline{B}

where $\underline{V} = \underline{V}_{\beta} + \underline{V}_{\downarrow}$ $\underline{V}_{\beta} = \left[\underline{b} \cdot \frac{1}{\nu} \left(g - \frac{1}{\rho_i} \nabla p_i \right) + \underline{b} \cdot \underline{u} \right] \cdot \underline{b}$

$$\underline{V}_{\downarrow} = \frac{1}{|B|} \underline{\underline{E}} \times \underline{\underline{b}}$$

now,
$$-\nabla \cdot n \underline{V}_{\beta} = b_z^2 \left(\frac{\partial}{\partial z} + \frac{\nabla \cdot b}{b_z} \right) D \left(\frac{\partial}{\partial z} T_p + \frac{g m_i}{k} \right) n$$

 $- (\underline{b} \cdot \underline{u}) n \nabla b - \underline{b} \cdot \nabla (\underline{b} \cdot \underline{u} n)$
 $- \nabla \cdot \underline{v}_{\perp} = \underline{B} \times \underline{E} \cdot \nabla (n / B^2)$

Upper Boundary Conditions

Mixed boundary condition

$$-b_{z}^{2} D\left(\frac{\partial}{\partial z}T_{p}+\frac{gm_{i}}{k}\right)n+n\left(\underline{b}\cdot\underline{u}\right)b_{z}+\frac{n\left(\underline{E}\times\underline{B}\right)_{z}}{B^{2}}=\Phi_{z}$$

Lower Boundary Conditions

Photochemical equilibrium

$$n = Q/L$$

O_2^+ , N_2^+ , N^+ and NO^+

Once the O^+ distribution is determined the O_2^+ , N_2^+ , N^+ and NO^+ equations are solved simultaneously assuming photochemical equilibrium with the O^+ distribution. From the chemistry specified, the production and loss terms are equated and a fourth order equation for n_e can be derived:

 $a_4 n_e^4 + a_3 n_e^3 + a_2 n_e^2 + a_1 n_e + a_0 = 0$

where

$$n_{e} = n (O^{+}) + n (O_{2}^{+}) + n (N_{2}^{+}) + n (N^{+}) + n (NO^{+})$$

$$a_{3} = \alpha_{1} (\alpha_{2} E + \alpha_{3} C) - \alpha_{1} \alpha_{2} \alpha_{3} (F + G)$$

$$a_{2} = \alpha_{1} EC - \alpha_{1} (\alpha_{2} E + \alpha_{3} C) (F + G) - \alpha_{1} \alpha_{2} D - \alpha_{1} \alpha_{3} B - \alpha_{2} \alpha_{3} A$$

$$a_{1} = -\alpha_{1} [EC (F + G) + DC + BE] - \alpha_{2} E (A + D) - \alpha_{3} C (A + B)$$

$$a_{0} = -EC (A + B + D)$$

$$A = k_{2} n (O^{+}) n (N_{2}) + k_{7} n (N^{+}) n (O_{2}) + \beta_{9} n (NO)$$

$$B = \eta (O_{2}^{+}) + k_{1} n (O^{+}) n (O_{2}) + k_{6} n (N^{+}) n (O_{2})$$

$$C = k_{4} n (N (^{4}S)) + k_{5} n (NO)$$

$$D = \eta (N_{2}^{+})$$

$$E = k_{3} n (O)$$

$$F = n (O^{+})$$

$$G = n (N^{+}).$$

The quartic equation can be solved exactly yielding four roots. Three of the roots are imaginary or not physical leaving one real and physical root, for the electron density, n_e . Once n_e is known, the ion number densities can be determined from

$$n (N_{2}^{+}) = D / (E + \alpha_{3} n_{e})$$

$$n (O_{2}^{+}) = B / (C + \alpha_{2} n_{e})$$

$$n (NO^{+}) = (A + ED / (E + \alpha_{3} n_{e}) + CB / (C + \alpha_{2} n_{e})) / (\alpha_{1} n_{e})$$

$$n (N^{+}) = \eta (N^{+}) / ((k_{6} + k_{7}) n (O_{2}) + k_{8} n (O)).$$

ARELIBO

TIGCM OUTPUT

- Neutral gas temperature, T_n
- Neutral winds, U, V, W
- Height of constant pressure surface, h
- Neutral composition and density

Major $-O, O_2$, and N_2

Minor $-N(^{2}D)$, $N(^{4}S)$, NO, He, and Ar

• Ion composition

 $O^+, NO^+, O_2^+, N_2^+, \text{ and } N^+ \Sigma n_i = n_e$

Ion temperature, T_i

Electron temperature, T_e

• Global dynamo — TIE-GCM

.

.

.

.

.

.

BOBLE ET AL.: THERMOSPHENEC DEMANCE, 1, TECM PREDICTIONS

TH ~ 650 K TL ~ 300 K

Ty~ 500 K T_~ 350 K

NEUTRAL TEMPERATURE (DEG K) DAY=79081 UT=16.00 ZP= 2.0

Su mma RY

What have we leaved · Themosphere is stable, no internal instabilitie durmally reproduintle · Variability caused by musations in solar and arrival forming . · Jower thermosphere appears highly vericable because of disturbances from lower atmosphere + Tides + Gravity Waves and mexing + 2 day --- 16 day wave. + TIME-GCM suggest lange variability ~ lower themosphere Global composition - 0/N2, 0/02 natio · Ionophine variability + winds + composition + ion drag. Processons _ station, satellite track etc Deagnortic Processo, Physicald cheminal