

Solar EUV Proxies: Why would you want to use anything else?

Rodney Viereck

NOAA Space Weather Prediction Center

Boulder, Colorado

Outline

- Solar EUV Spectra (min max flares)
- Solar EUV Proxies (SSN F10 MgII)
- Where do proxies work?
- Where do proxies fail?

Solar EUV Irradiance

- Critical to the formation of the ionosphere
- Critical in heating the ionophsphere/thermosphere system
- Very difficult to observe over long time spans
 - Must be observed from space
 - Difficult to obtain sensor stability over many years
 - Often requires calibration rocket under flights to remove sensor degradation
- EUV irradiance is typically represented by proxies
 - F10.7 cm, Sunspot Number, MgII, etc....

Solar EUV Spectra

For solar min, solar max, and solar flares

Changes in Solar EUV Spectra

Variability increases with decreasing wavelength

H Lyman alpha is bright but does not vary much

Much of the energy and much of the variability is below 40 nm

 W/m^2

Solar Spectrum and Absorption Cross Sections

Solar EUV Photons collide with O, O2, and N2 in the thermosphere.

They heat and ionize the atmosphere

Solar spectrum (white) and where it is absorbed in the atmosphere (colors)

EUV Models

- Hinteregger (1970)
- Nusinov (1984)
- EUVAC (Richards, 1994)
- Solar2000 (Tobiska, 2000)
- FISM (Chamberlain, 2008)

Solar EUV Time Series

- Very few exist over long time periods:
 - It is difficult to measure solar EUV irradiance
 - It is difficult to establish and maintain calibrations
- No continuous EUV measurements that span decades
- Proxies are required
 - Sunspot Number
 - F10.7
 - Mg II core-to-wing ratio

Proxies for Solar EUV

Another Proxy and some Actual EUV

Sunspot vs SEM 304

F10 vs SEM 304

Mg II vs SEM 304

Proxies vs Actual EUV

SSN really should not be used as a proxy for solar EUV except for climatology studies.

Proxies

Mg and F10

 Combining the daily with an 81-day average helps to minimize the over-estimation

 Serious Limitation: This formulation cannot be used for real-time applications

Including Smoothed Values

Long Term Trends

• Which proxies (or measurements) capture the solar cycle variability?

Drag Density at 400 km (Emmert) (Note: Log plot to enhance differences and minimum)

Observations of He 30.4 nm EUV

The Solar EUV Monitor (SEM) on SOHO has been measuring the 30.4 nm band (27-34 nm) since 1996.

Long term degradations and trends have been removed using periodic rocket underflights.

The data set shows a decrease of 18% in EUV irradiance during the most recent minimum compared to the previous minimum.

Is it real?

Thermospheric Drivers Solar EUV (F10), Geomagnetic Storms (Ap), Climate Change(CO₂)

F10

Estimating the Anthropogenic Contribution

Extrapolating the correction to the full extent if the time series Note: This is about twice the rate of Roble's estimate

Date

MSIS Results Using the Three Solar Inputs (Corrected for anthropogenic trend)

MSIS Results Using the Three Solar Inputs

Relative Magnitude of the Density Changes

Modeled density changes for each input while holding the other two constant

Density (gm/cm³)

Comments on EUV Proxies

- Sunspot Number
 - Captures the large scale features of solar variability
 - Provides the longest record
 - Does not capture day-to-day variations well
- F10.7 cm Flux
 - Extends back six solar cycles (to 1947)
 - Works for most time intervals (weeks to years)
 - May level off at solar minimum
- MgII core-to-wing Ratio
 - Extends back three solar cycles (1978)
 - Works over most time intervals (weeks to decades)
 - Captures long term variability including solar minimum
- The inclusion of an 81-day smoothed component precludes real-time applications
- None of the proxies allow for temporal resolution shorter than 1 day.

A New Era of Solar EUV Observations

- F10 and SSN (and MgII) have served well
- We can now make actual EUV measurements
 - Improved accuracy
 - Improved cadence and latency
 - Improved long-term stability!
- SOHO SEM (1997 Present)
- TIMED SEE (2001 Present)
- GOES EUVS (2009 Present)
- SDO EVE (2010 Present)
- Solar EUV irradiance models should be driven with actual EUV observations

New EUV Observations at 30.4 nm

Solar Flares Observed with GOES EUVS

Solar flares represent new complexities:

- Emission ratios change from flare to flare
- Flare emissions rise and fall at different phases of the flare

Summary

- Sunspot Number should not be used as a proxy for solar EUV
- F10 + F10_{81-day-avg} works well for most timeframes and applications
- MgII + MgII_{81-day-avg} may work a little better for decadal studies
- It is time to start using actual EUV observations to drive models.