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Introduction

* The study of atmospheric emissions was initiated in the 30’s by Rayleigh, Cabannes,
Barbier. Further progress was established by Roach and Meinel in the *50s.

* In the early ‘70s Eather and Mende combined existing photoelectric photometers
with all-sky optics to look at the aurora.

* For equatorial and low latitude studies of faint airglow emissions the first observations
were made by Weber in 1978. 2.5 sec exposures; the resulting TV frames were recorded

on videotape and by photographing the TV monitor (Weber etal. 1978)

0300 UT 0400 UT (Mendillo and Baumgardner, 1982)
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* In 1981, Mendillo and Baumgardner installed an all-sky imager
at Ascension Island. The output phosphor was then imaged on to
35-mm film

s

6300 A AIRGLOW IMAGE
FROM ASCENSION ISLAND
{30 JANUARY 1981 22:20 UT)

* Since these original studies in the late 70s and early 80s all-sky imaging
techniques proved to be extremely valuable when studying the evolution of
processes in the mesosphere, thermosphere, and ionosphere. 2D imaging literally
adds a second observational dimension to line-of-sight (e.g., radar, lidar) or in situ
(e.g., rocket and satellite) measurements.



Typical configuration of an imaging system

Front lens
(narrow, all-sky)

Optical system
(Ienses, filters)

Detector
(TV, film, CCD
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MeNDE AND EATHER: MONOCHROMATIC ALL-SKY AURORAL OBSERVATIONS
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Schematic representation of the all-sky monochromatic imaging system Wide field of view optics form an it
of the sky through lour interchangeable narrow band filters on the photocathode of the image intensifier tube, The it
intensifier is coupled to the TV camera, which takes time exposures of the intensified image. A single TV scan is recorde
each exposure on storage video discs and on video tape. The Hf picture is processed by digital processor and is corn

for background contamination. A minicomputer (CPU) controls the sequencing of the system. Black and white and |
monitor displays permit real lime monitoring of auroras in each wavelength band.
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CCDs (charged coupled devices) WEswsEEa
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A CCD is basically a 2D array of photosites on a silicon

substrate. Light falling on the CCD is recorded as an 00000000 -
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* EMCCDs (electron multiplying CCDs): o B
Most EMCCDs utilize a Frame Transfer CCD structure that B — )
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NOISE

Image signal: from the source and background (S+B)
and Thermal signal: thermal activity of the semiconductor (D)

Noise: In addition to the signal we are interesting there is noise. Noise is
uncertainty in the true value of the pixel , which shows itself as variability in the
results of a given measurement. The Signal to Noise Ratio (SNR) 1s defined as the
ratio between a given signal and the noise associated with that signal.

* Photon noise: The incoming photons S have an inherent noise; follow Poisson
statistics, random process.

*Thermal noise: Noise resulting from thermally generated electrons; dark signal.
The dark signal adds to your measured signal (S+B).

* Readout noise: inherent property of the CCD sensor. Readout is the process by
which data are taken from the pixels of the CCD and stored in computer memory.

*Quantization noise: is generated by the signal coming from the CCD
digitization
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In EMCCDs:

Spurious noise (Clock Induced Charge)
and Noise Factor (Azmplificatiog noise)
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Airglow

Airglow is a term that refers to an optical emission from excited atmospheric species

1000F 11000

500
€ £
~ 300 300 =
250 250
200 1200
150 150
100 . ; ; L , L —110Grom Johnson, 1969)
10 0 10
Number crmi > A
800 -
Solar EUV radiation 1onizes neutral Night =\~ \{=Day
species 1n the upper atmosphere _ 400 -
Main neutrals: N, , O, , O < e
Main ions: NO*, O,", OF 0
E Region
. . . . 100 |-
E region: photochemistry 1s dominant
| | | | | -

F region: transport 1s important ¢ 0 0 00 10

. . _3
(from Baumjohan, 1996) Electron Density in cm



Nightglow spectrum
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The GLO (Arizona Airglow Experiment) instrument has a set of imaging spectrographs
that simultaneously observe the entire wavelength range from 1150A to 9000A at a
resolution of ~5A in the UV and visible to ~10A in the near IR.



* All-sky 1imager measurements in the mesosphere : GWs, Bores
Typical Airglow emissions in the mesosphere:

Mesospheric Nightglow Layers
1108

1. Hydroxyl (OH). Numerous Meinel
bands range from visible to the infrared.

1)

2. Neutral Sodium (Na). Line doublet
589.0 & 589.6 nm.

Height (ki

3. Molecular Oxygen (02 ). O2(0-1) | |
band is centered at 866.0 nm. TR T |

Line at 557.7 nm.
Most comes from the mesosphere near 96 km via the three-body
Barth reaction



* Processes measured with all-sky imagers in the low and mid latitude

F region: ESF; MSTIDs; BW

The typical airglow signatures in the thermosphere correspond to neutral O

emissions at 6300 A and 7774A

* 7774A emission is caused by the radiative recombination of O*

+ — *
O"+e >0 +hv,,,

Excitation
energy

Quantum
state

4-17 eV

* The so-called oxygen red line at 6300 A (OI 6300 A)
represents the spontaneous de-excitation of atomic
oxygen from the 'D state to the 3P ground state.

1-96 eV —
O('D) is produced mainly by two processes involving O™.
The first one with O, and the second one, less important,

9
2972 A

fuv

'S,
074 s

5577 A

Green

with N,

0-00 eV

0,+0"—2-0; +0 O; +e” —%>(2-)0+ B0('D)




* O('D) states de-excite by quenching with neutrals through

O('D)+0, —22 >0, +O(’P)
L, = d,[O('D)]

with dp = «, [N,] + 1, [O,] + k; [¢'] +k, [O]

* O('D) states can de-excite also by spontaneous emission of a photon

L, = A,[O('D)]

Ap = Agyo T Agzes

production

r

(B [051+ B,a,[NO* )]

Ap + 0
——

loss

[O('D)]=

O('D)—2%0 5, OCP) + (W) 1o




d [hv]6300 1
€6300 = dt =|Ass00 [O( D)J
(,310517/1[02]+,320£27/2[N2])[e_]
Ap +dp
* The emission is limited to a relatively narrow layer between 250
and 300 km. For comparison, &,,-, IS proportional to [O*] [e7].

E6300 = A6300

Modeled 7774 A Emission Modeled 6300 A Emission
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The integral with height of g, gives the total vertical column emission rate
in phot/cm? - sec. The Rayleigh is defined as 10° phot/cm? - sec, so the quantity
we measure, expressed in Rayleighs is:

| o0 (RAYlEIGHS) =107 [ £,,0h

h V I 7774

* Combining brightness of these two emissions: hax €
Tinsley, 1973; Makela et al, 2001 I 6300



How to set up an all-sky imager?
The system you build/buy will depend on your specific needs:

* Narrow field of view (8°, 199, 47°) : Sprites; Aurorae; equatorial
1onospheric irregularities; planetary imaging.

* Wide angle FOV (180°) , a.k.a all-sky imaging: Equatorial (ESF),

and midlatitude (MSTIDs) 1onospheric irregularities; aurorae;
mesospheric neutral processes (gravity waves, bores), etc.

* Fast read out noise: for dynamic processes, ICCDs; EMCCDs

What can you do?

1. Standard systems: Keoscientific.

2. Do 1t yourself:

* Cameras: Andor, Apogee, Finger Lake, Hamamutso, Princeton, etc.
* Lenses: surplus/used market.

* Filters: Andover, Barr, Knightoptical, Melles Griot, etc.




* The 1dea 1s to use large F/# (3.5 to 5.6) optics to bring the image to
your optical system, and then use a small F/# (0.95 to 1.5) re-imaging
lens to bring it to the CCD detector.

* Fish-eye lens: limited options: Mamiya 24 mm/F4; sigma 15
mm/F2.8; Mamiya 24mm/F5.6. Typical image sizes from a fish-eye
lens are 40, 70, and 92 mm.

* Filter size: typical 3°” diameter, but better 4°° diameter (more
expensive) — smaller angles.

|

== ip=at

* Telecentric or Collimating configuration

Courtesy of J.Baumgardner
»Given a CCD , what is the “plate scale’ of the system?,

- 180° are covered by 2048 pixels, then the area covered is ~0.088°/pix

- If binned 3x3, 180° are covered by 682 pixels then: ~ 0.26°/pix
Sensitivity increases by a factor of 9 , but resolution decreases by 3




* Narrowband Filters (FWHM ~ 10-15 A)
Also called bandpass or interference filters, they are optical filters that
reflect one or more spectral bands/lines and transmits others.
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* Van Rhijn effect

slant path effect that enhance brightness
due to increase 1n optical path length
through the emission layer .

Van Rhijn effect
R e

_ 557.7 nm
630.0 nm

20 40

zenith angle

60 80

* Vignetting
the off-axis response of the imaging
system that reduces brightness at the

rim of the fisheye lens toward the edge
of the FOV

EMITTING
LAYER

HORIZON

1

V== R/ R+h)] 2sin 7]
From Roach and Meinel, ApJ, 1955

Vignetting effect

The two effects act in opposition, but vignetting tends to exceed van Rhijn

enhancement at the edges



Rayleighs /Angstrom

* Calibration:

* It 1s typical to use a tungsten lamp
whose brightness in R/A (or (R/nm)
has been cross-calibrated with a

radioactive C!# light source.

This source can be directly compared
to the C!4 source only over ~100 nm

near 620 nm.
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Sensitivity

*fact Cl4;,, =(C'*%(6300) /Im_brightness1)*area
* fact lampg;,, =(lamp(6300) /Im_brightness2)*area

Zenith calibration for El Leoncito
60 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T

40+ -

.
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Rxsec/DN

4+—+ Car_tr |
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Using a C'* source, we obtain a zenith
calibration factor that is used to
calibrate the image at different zenith
angles considering vignetting and
assuming an extinction model

R.sec/DN

'20 T T T T I T T T T I T T T T I T T T T I T T T T
1a0|— el

sol— §+*

Pixel distance = zenith angle

Another method implies using
standard stars. The resulting curve
Includes vignetting and extinction.

Both methods show agreement at zenith:
~ 25 R.sec/DN (or 0.04 DN/R.sec)



Subtracting stars and the Milky Way from All-Sky Images

* Stars can be filtered out using a median filter.

* BUT large saturated areas, e.g., the Milky Way, can not be easily
removed.

* Simultaneous off-band 1images are usually not available.

* An appropriate background image can be constructed by re-
mapping the off- band 1mage to the desired time

6300 image

Background image Difference




Unwarping all-sky images

* The lens projects an image onto the CCD such that
cach pixel subtends an equal angle of the sky

* A zenith angle of 75° encompasses approximately +
10° of latitude/longitude

* The raw 1image needs to be converted into
geographic coordinate system, assuming an emission
height. This 1s done by first calculating a ‘distortion
function’ that relates zd in pixels with zd in degrees;

Raw_Im (X, y) = Unwarped_Im (xX, yy)

Leancito Imaoger Distartion Function
B [ )

Unwarped Im
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DecOB07

This unwarping 1s necessary 1f we are trying to find wave parameters
or if we are trying to correlate in-situ or line of sight measurements
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Optical Imaging of mesospheric and thermospheric processes
1. Mesospheric gravity waves and bores
2. Low and mid latitude ionospheric irregularities

3. Narrow band observations and planetary imaging



Mesospheric Gravity Waves
GWs are omnipresent in all-sky images of the night-time mesosphere

* Typical horizontal phase speeds: 20-70 ms-!

* Typical horizontal wavelength: 10-50 km or more.

El Leoncito 15 August 2006 00:09:10 UT Hydroxyl 685-950nm

6%

4%
2% [

I
0% &

Origin: :
1. Convective centers, e.g. thunderstorms, weather frontg.
2. Jet-streams. o

o 100 200 300 400 50O OO VOO

3. Orography, e.g. winds blowing over mountain ranges.

from Garcia et al., 1997



OH 87 km Na 92 km 0('S) 96 km

Multi-spectral all-sky 1images
can yield valuable informatio
about the vertical structure of

the mesopause region. Ny S ¢ i
02:29UT J 02:30 U

Large GWs present in the hydroxyl and Na layers at 87 km and 92 km
altitude, respectively. But absent 4 km higher 1n the OI layer

Mesospheric Bores
* The mesospheric bore 1s a non-linear type of mesospheric gravity wave.

* Extensive band-like patterns
K 557.7 nm . that exhibit a sudden or sharp
# | onset. Propagate at 50-70 ms’!
and horizontal A of 25-35 km.

* Bores propagate horizontally

inside a ducting region such as a
temperature inversion layer or a
i wind shear.

14 Novermnber 1999 10:53:40 UT ' Dec 120030851 UT O(:lS_) 557.7 nm

Courtesy of S. Smith



Equatorial ionospheric irregularities, equatorial spread-F, ESF

* At the magnetic equator gravity and N,
gradients perpendicular to the almost T_. o e e
horizontal B: ;

A(t)=A_+5Ae"

>F VN |ExB g -
Trr = '

g
-=-U
.+, N | B v, "

m

All the quantities are flux tube integrated

Any Latitude/altitude variations of thermospheric
winds, drifts, and conductivities will affect the
behavior of the electrodynamics of the system



JULI: ETI Plot on March (6, 1887
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ESF structures

ASCENSION ISLAND MAGNETIC MERIDIAN
AIRGLOW VIEWING GEOMETRY

ZENITH

HEIGHT (km)

JAN 04 03
Areciba

El Leoncito (31° S, -18°mag)
~900 km Apex height
~1700 km Apex height

Arecibo (16° N, 23° mag)
~1800km Apex height

. o13ouT 02:24:49 UT



Zonal drift from all-sky images

Eastward velocity (m/s)
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Feb 16, 2002 22:17 LT

from Kelley et al., ‘02
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Conjugate observations (Martinis, IGR’07)
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Feb 05 2005

ESF

BAND
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01:47UT

JULIA RTI Flot on February 04, 2008

¥ Simultaneous occurrence
: ESF to the north moving eastward
Dark band moving northwestward

150G
1

Altitude (lom})
1000

A
o . "1
=3 o |
e LT N k ¢
[— T - gEs . .
T T T T T I. B
20 22 24 28 28 30




MSTIDs in airglow images

MSTIDs (medium-scale traveling 1onospheric disturbances)
gravity waves; Perkins instability; Es-F region coupled instabilities;

Jan 7, 1897 0001 Mar 8, 1997 0218 Nov 29, 1997 2241

30-3BR Kp 4.0 - ; 52-80R
Dec 21, 1997 2036 ul 26, Sept 28, 1995

02:35: 31 uTt
25 JANUARY 1993

(Mendillo et al., ’97)

ke (Kelley et al.gt02) _
* Conjugacy of MSTIDs; Propagation limit;
associated with electrlc fleld fluctuatlons

100-120R KpOQ.7

(Saito et al, ‘95).

3 5 10 15 20
Occurrence Rate %1



TEC and 6300 waves

23:20:00 “ 05’(22 98 TEC []_0]61']]12] 0' 630 0 nm emission /

MSTIDs conjugacy

—

) Sata [lel‘t) and cun]ugate of Darwin (right)

£l 128 128 180 182 184 126 128 130 183 1S4 128 123 180 183 184
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(from Saito et al., 2001)

(b)

DMSP electric fields and MSTIDs

(@) Shigaraki 630nm 20 Deviaion®) 20 Shigaraki 630nm 20 Deviation(®) 20 (b)
altitude: 300 km -r--‘ altitude: 300 km
May 17, 2001, 1220:49UT. 1024kmX1)24km May 17, 2001, 1220:49UT, 1024kmX1024km

(from Shiokawa et al., 2003)
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6 December 2007- El Leoncito MSTIDs

MERCEDES

3 June 2009
Arecibo-Mercedes MSTIDs




Brightness Wave (optical signature of the MTM)

Arecibo El Leoncito SEP24 03
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(from Martinis et al., 2006)
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Using narrow field of view imagers and arrays of imagers

Equatorial studies: CCD cameras looking along B in combination
with all-sky 1magers; combining all-sky imagers

Auroral studies: ICCDs and EMCCDs
Sprites studies: ICCDs 1000 to 10000 frames per second.

Beyond the Earth’s atmosphere: Na spot studies, planetary imaging



Arrays of Imagers
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Auroral breakup: scale dependence

2007-03-23 11:20:27 UT 2007-03-23 11:20:33 UT . 2007-03-23 11:20:39 UT
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» 180° FOV (~650 km)
* White light

F
7 .\ S
1. |
\ S - 1-s exposure
~ . "

« 30° FOV (65 km)
* N*, 427.8nm
« 5-S exposure

« 90 FOV (19 km)
* Prompt emissions
» 33-ms exposure

Semeter et al., 2008




Red Sprites

Stenbaek-Nielsen and McHarg, 2008

Phantom-7 high-speed CCD camera with a VideoScope gated intensifier captured
these sequence of images in 2005. The intensifier has a P-24 phosphor with a
decay time constant of a few ns so there is no persistence between successive
images (older model, 0.8 ms decay time constant). FOV each frame is 6° x 6°



* During new Moon time, the geometry of the Sun, Moon and Earth is such that the
anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting

in its focusing into a dense core -
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* At the McDonald Observatory, a 10-cm
aperture telescope equipped with coronagraphic
capabilities has been developed to obtain low-
light-level, wide-angle (~7° FOV), narrow-band
filtered images of sodium exospheres at lo, the |
Moon and recently, Mercury. w

Baumgardner et al., GRL, 2009





Summary

» Since the first observations in the late *70s optical imaging of
atmospheric processes has become a pivotal tool for acronomy.

» All-sky imagers allow us to study the 2D structure of mesospheric
and thermospheric processes, 1n particular they separate spatial and
temporal evolution.

» The optical diagnostics is enhanced when complementary
Instrumentation is used.

» Narrow field of view imagers can be used to study processes with
a better spatial resolution; they can also be applied to investigate
processes occurring beyond the Earth’s atmosphere.
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