# Characteristics of Self Acceleration driven Gravity Wave Instabilities

Brian Laughman, Dave Fritts, GATS, Inc.

Tom Lund, NWRA

# 50 Years of Gravity Wave Research *a Tribute to Colin Hines*



# June 25<sup>th</sup>, 2013

#### Self Acceleration Dynamics

- What is Self Acceleration?
- Modeling Efforts
- Characteristics of Self Acceleration
  - 2D vs. 3D instabilities
  - Viscous dependence
  - Frequency dependence
  - Amplitude dependence
  - Horizontal wavelength dependence
  - Multiple breaking events
- Conclusion

# What is Self Acceleration?

Gravity wave / mean flow interactions:

Wave BreakingSelf AccelerationViscous coupling

Self Acceleration:

- Conservative, Transient
- Momentum flux divergence leads to mean flow acceleration
- Peak flux offset from peak response





#### Evolving Mean: Self Acceleration GW Breaking



#### Fixed Mean: Gravity Wave Breaking

![](_page_4_Figure_1.jpeg)

# Modeling Efforts

Anelastic Navier-Stokes model

•No sounds waves

•Accounts for density variation with height

Current results

•Runs are isothermal (slightly non-physical breaking altitudes)

•Runs initialized with a headwind

•Runs initialized with a 2D wave packet periodic in the horizontal and confined in the vertical

•For 3D runs low level noise is added to seed spanwise instabilty

#### Evolving Mean: 2D precedes 3D instability onset

streamwise

![](_page_6_Figure_2.jpeg)

spanwise

#### Fixed Mean: 2D and 3D instability nearly concurrent

streamwise

![](_page_7_Figure_2.jpeg)

spanwise

#### Self Acceleration: u, w, T, and vorticity magnitude

![](_page_8_Figure_1.jpeg)

Velocity fields u' w'

Potential Temperature Vorticity Magnitude

## Self Acceleration: Viscous effects

#### Self Acceleration Breaking largely ignores viscous effects

*Vorticity magnitude* 

![](_page_9_Figure_3.jpeg)

#### Packet initialized at 60 km

Packet initialized at 10 km

# Self Acceleration: Frequency dependence

Multiple frequencies, same amplitude

- Breaking altitude frequency dependent •
- Shape of instability apparently independent ullet
- Role of dispersion? ullet

![](_page_10_Figure_5.jpeg)

 $A = \frac{u'}{c}$ 

# Self Acceleration: Amplitude dependence

- Breaking altitude amplitude dependent
- Shape of instability apparently independent

![](_page_11_Figure_3.jpeg)

Self Acceleration: Dispersive effects?

Amplitude Growth with Altitude:

![](_page_12_Picture_2.jpeg)

$$A(z) = A_0 \exp\left[-\frac{(z-z_0)}{2h}\right]$$

$$z_T - z_0 = 2h \log\left[\frac{A_0}{A_T}\right]$$

Works for N/1.414

Not fully understood Preliminary values

# Self Acceleration: Length scale dependence

- Horizontal wavelength affects appearance of SA breaking
- Horizontal wavelength also affects time to onset; group velocity

![](_page_13_Figure_3.jpeg)

#### Self Acceleration: One wave, multiple breaking zones

![](_page_14_Figure_1.jpeg)

# Self Acceleration: Conclusions and Future Work

# Conclusions:

- Natural consequence of vertical wave propagation
- Effective Gravity Wave instability mechanism
- Dynamic signature largely determined by horizontal wavelength

#### Future Work:

- Characterize the potential role of dispersion
- Parameterize relationship between sources to events
- Consider realistic background environments
- Localize forcing in streamwise
- Localize forcing in spanwise, consider 3D consequences
- Comparison with observation *(the future is now)*