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Motivation: Why do some geomagnetic storms with strong
solar wind and magnetosphere-ionosphere coupling
produce lower than expected thermospheric density

upheaval?
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Q’} Dst and Neutral Density Perturbation

Courtesy Paul Tenfjord
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Superposed Epoch Analysis (SEA)
COMPARISON

Zero epoch hour Dst<-75nT
Median values, 2 hr average bins 2004-05

___Control Storms __ Problem Storms
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11 Problem (blue) and 12 Control (red) Storms
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Zero epoch hour Dst<-75nT
Median values, 2 hr average bins 2004-05
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11 Problem (blue) and 12 Control (red) Storms

Problem-storm Dst has compression effect
and larger negative perturbation*

Problem-storm neutral density has delayed,
fast rise and then a sudden plateau
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ﬁ Nitric Oxide — Why it is important?

Present in the thermosphere - maximum density near 110 km:
- Abundance — several times 10-4 mixing ratio at 130 km
- Highly variable — factor of ten — 27 day and 11 year variation
- Always larger in the auroral region (max at 65° geomagnetic latitude)

Nitric Oxide is the most important cooling mechanism in the lower thermosphere:
 Heteronuclear molecule has a permanent electric dipole moment
— Infrared cooling in the 5.33 um band—thermostat effect

Odd nitrogen controls the composition of the lower Ionosphere:
NO + 02+ — NO* + Oz
N+ O, = NO* +0
NO* +e - N+O
— Controls temperature in the critical 120 km region Why do the
April 10 2002 April 18 2002 problem
G 5 TR I2x1o StO rms
produce
more Nitric

Oxide?

2x10

No (o o (10 Courtesy of Scott Bailey
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Problem Storm NO Flux

Problem Storms: SABER NO Emissions [mW:‘mZ]
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Control Storm NO Flux

Control Storms: SABER NO Emissions [mmez]
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SEA DMSP COMPARISON

Problem storm DMSP Poynting Flux similar
for problem and control storms

Problem storms have more low energy
particle precipitation in pre, initial and main
storm phases

Source of these particles?
shock aurora?
plasmasheet?
ring current?

Lowest energy particles are important to
rapid upheaval in neutral density and
enhanced Joule heating

Higher energy particles create NO and damp
neutral density response

Joule heating enhances NO production
Knipp et al., GRL 2013,



: .. Knipp et al., manuscript in preparatior
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Solar Wind IMF COMPARISON
Problem-storm solar wind density has long

interval of pre-storm enhancement

Problem-storm solar wind dynamic pressure
is elevated with strong prestorm
enhancement

Problem-storm IMF B, is larger during
prestorm interval

Problem-storm IMF B, has long positive to
neutral phase relative to control storms

Problem storm ULF waves at geo are
enhanced relative to the control storms

Knipp et al. GRL 2013
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SEA COUPLING & INDEX COMPARISONS

Problem storm coupling functions and AL
have delayed sharp rise with slightly higher

main phase values

Problem storms have enhanced ASYM and

AU values
consistent with higher conductance

created by enhanced precipitating particles
on the dusk side

Knipp et al., manuscript in preparation



Solar Wind Conditions Sheath Driven Storm
" s Comparison

Gou et al.,, JGR 2010
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Our problem storms have most of the solar
and indicial characteristics of solar wind
CME sheath driven storms identified by
Guo et al., 2010

Nem™)

Our problem storms appear to be a subset
of sheath driven storms with Bz+ IMF in
the sheath and leading field in the CME.

The IMF orientation provides the “calm
before the storm” set up for a
magnetospheric cold dense plasmasheet
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ﬁ“Does solar wind preconditioning of the magnetosphere
alter the intensity of auroral particle precipitation and

thus the production of nitric oxide?

1) Bz+ =» Cool dense plasmasheet? 2) Bz- = Subsequent tail stretching

Time = 001:11:54 MF = 5.01 nT Time = 001:22:58 IMF = 1.93 nT

Z(Ry)
Density (AMU/cm®)

Z(Rg)

3) Bz- =» More intense tail activity 4)=» Enhanced particle precipitation

Time = 002:02:24 IMF = 0.97 nT Time = 002:05:12 IMF = 0.19 nT

Z(R)
Density (AMU/cm®)

Z(Ry)
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LFM output, courtesy of Binzheng Zhang



ﬁSolar Cycle Magnetic Cloud Orientation

23 to 24
Decline and min between even to odd odd to even cycles
Magnetic Rope Types Lying in Ecliptic Plane
Even to odd Odd to even
transition: Type transition:
CME’s: tend - _— CME’s: tend
to arrive , South South Nodh North to arrive
south field eading Fleld (-B2) (-B2) (+B2) (+B2) north field
. . East West East West 1
first el Feid (+8y) o) (+8y) o ||t
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Figure 1. Four orientations of ecliptically oriented flux rope
model and its magnetic signatures. Notc N=north, S=south,
E=east, W=west [after Bothmer and Rust [1997]].

Combined north field storm sheath and north field
first CME may be a factor in “Problem” NO storms



@Y Summary

] \l’e“
The imprint of solar wind density and dynamic pressure perturbations reaches
into the thermosphere during CME sheath-driven storms

CME Sheath-driven storms induce rapid production of thermospheric nitric oxide
Shock aurora effects and low energy electrons
Likely dense plasmasheet
Magnetospheric waves and or plasmaspheric plumes
Excess particle (electron and ion) precipitation

Infrared nitric oxide emission competes with storm-driven energy deposition
The result is thermospheric “damping,” and mis-forecast of neutral density

These effects influence satellite drag and satellite operations

UNKNOWNS: role of heliospheric current sheet, effects of ionospheric upflow/
outflow, ring current effects; plasmasphere and TEC variations; F-region

behavior, SAPS; thermospheric winds; mesospheric impacts....
OMNIweb, NASA Langley, Kyoto University, CEDAR data base and
National Geophysical Data Center provided data for this study
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