

The micrometeor flux in the MLT

Diego Janches Cora Division/NWRA

Thanks to: Jonathan Fentzke and Jonathan Sparks CoRA Division/NWRA University of Colorado Sigrid Close Los Alamos National Lab Lars Dyrud Center fro Remote Sensing, Inc John Plane and Tomas Vondrak University of Leeds Craig Heinselman and Mike Nicolls SRI International Jorge L. Chau and R. Woodman Instituto Geofisico del Peru

Presented at CEDAR 2007 Santa Fe, NM June 24-28, 2007

NWRA Since 1984 Meteors and the CEDAR Community CoRA Since 1984

NWRA Meteors and the CEDAR Community CoRA Since 1984 Several decades of measuring winds by detecting meteor trails

NWRA Since 1984 Meteors and the CEDAR Community CORA

Several decades of measuring winds by detecting meteor

trails

NWRA Meteors and the CEDAR Community CoRA Since 1984 Several decades of measuring winds by detecting meteor trails

NWRA Since 1984 Several decades of measuring winds by detecting meteor trails

1994 a good year for meteors and aeronomy: several papers showed the unique capabilities of ISR study these particles and their relation to upper atmospheric phenomena (Chapin and Kudeki, JGR; Zhou et al, JASTP and Wannberg et al., JGR, 1994)

NWRA Meteors and the CEDAR Community CoRA Since 1984

Several decades of measuring winds by detecting meteor

19

pa

th

pł

JG

al.

NWRA Since 1984 Several decades of measuring winds by detecting meteor trails

1994 a good year for meteors and aeronomy: several papers showed the unique capabilities of ISR study these particles and their relation to upper atmospheric phenomena (Chapin and Kudeki, JGR; Zhou et al, JASTP and Wannberg et al., JGR, 1994) NWRA Since 1984 Several decades of measuring winds by detecting meteor trails

1994 a good year for meteors and aeronomy: several papers showed the unique capabilities of ISR study these particles and their relation to upper atmospheric phenomena (Chapin and Kudeki, JGR; Zhou et al, JASTP and Wannberg et al., JGR, 1994)

1998: the Leonids Meteor Shower offered the posibility for multi-instrumental observing campaigns

NWRA Since 1984 Meteors and the CEDAR Community CoRA

Several decades of measuring winds by detecting meteor

trails

1994 a papers these p phenom JGR, 1994 1998: • for mul

NWRA Since 1984 Several decades of measuring winds by detecting meteor trails

1994 a good year for meteors and aeronomy: several papers showed the unique capabilities of ISR study these particles and their relation to upper atmospheric phenomena (Chapin and Kudeki, JGR; Zhou et al, JASTP and Wannberg et al., JGR, 1994)

1998: the Leonids Meteor Shower offered the posibility for multi-instrumental observing campaigns

NWRA Since 1984 Several decades of measuring winds by detecting meteor trails

1994 a good year for meteors and aeronomy: several papers showed the unique capabilities of ISR study these particles and their relation to upper atmospheric phenomena (Chapin and Kudeki, JGR; Zhou et al, JASTP and Wannberg et al., JGR, 1994)

1998: the Leonids Meteor Shower offered the posibility for multi-instrumental observing campaigns

2001: Diego Janches got the CEDAR Postdoc award for meteor related research

-Large scale atmospheric dynamics

NWRA Why meteors are important at CoRA Since 1984 CEDAR? CORA

-Large scale atmospheric dynamics

-Meteoric Mass input is the source of a number of atmospheric phenomena- Yet to be determined how much mass

NWRA Why meteors are important at CoRA Since 1984 CEDAR? CORA

-Large scale atmospheric dynamics

-Meteoric Mass input is the source of a number of atmospheric phenomena- Yet to be determined how much mass

-Meteor Plasma physics

NWRA Why meteors are important at CoRA Since 1984 CEDAR? CORA

- -Large scale atmospheric dynamics
- -Meteoric Mass input is the source of a number of atmospheric phenomena- Yet to be determined how much mass
- -Meteor Plasma physics
- -Space hazard

Uniform flux no good to explain:

Uniform flux no good to explain:

CoRA

1) Seasonal and global behavior of metal layers. In particularly the seasonal asymmetry of the metals (maximum in late autumn/early winter in the NH

Uniform flux no good to explain:

CoRA

1) Seasonal and global behavior of metal layers. In particularly the seasonal asymmetry of the metals (maximum in late autumn/early winter in the NH

2) Lack of Atmospheric Ca and high Ca+/Ca

Uniform flux no good to explain:

CoRA

1) Seasonal and global behavior of metal layers. In particularly the seasonal asymmetry of the metals (maximum in late autumn/early winter in the NH

2) Lack of Atmospheric Ca and high Ca+/Ca

Uniform flux no good to explain:

2) Lack of Atmospheric Ca and high Ca+/Ca

3) Global distribution of meteoric smoke if it exists; smoke particle size distribution

Uniform flux no good to explain:

2) Lack of Atmospheric Ca and high Ca+/Ca

3) Global distribution of meteoric smoke if it exists; smoke particle size distribution

4) Meteoric smokes may have influenced paleoclimates

NWRA

Since 1984

Sources of radar signal scattering from a meteor event

Direction of motion

Meteoroid R~ microns to mm V~ 10 to 70 km/sec

Sources of radar signal scattering from a meteor event

Direction of motion

Sources of radar signal scattering from a meteor event

CoRA

Direction of motion

Air Molecules

Specular Meteor Radar Observing Geometry

Specular Meteor Radar Observing Geometry

HPLA Radar Meteor Observing Geometry

HPLA Radar Meteor Observing Geometry

Meteor Detection at Arecibo

AO 430 MHz Meteor Experiment

Time (msec)

Time (msec)

Janches et al., JGR, 2003

b.

Velocity (km/sec)

oRA

Deceleration **Energy Transfer** $M\frac{dV}{dt} = -\Gamma S\rho_{air}V^2 + gM\left(\frac{R_{Earth}}{R_{Earth}+z}\right)^2 \cos(\theta) \qquad \frac{1}{2}C_h\rho_{air}V^3 = \underbrace{\sigma_{sb}\mathcal{R}\varepsilon\left(T_{Melt}^4 - T_{Air}^4\right)}_{radiation} + \underbrace{\frac{4}{3}R_{Met}\rho_{Met}C_{sh}\frac{dT_{Met}}{dt}}_{heating}$ **Vertical Velocity Electron line Density** $\frac{dz}{dt} = -V\cos(\theta)$ $q_{line}(z) = \frac{\tau_{ion}\rho_{Air}(z)\mathcal{A}\sigma(z)\Gamma}{2n} \left(\frac{M(z)}{\rho_{Mat}}\right)^{2/3} V^{4}(z)$ Mass Loss **Electron Volume Density** $\frac{dM}{dt} = \frac{-C_h S \rho_{air} V^3}{2Q_{Heat}}$ $q_{vol}(z) = \frac{q_{line}(z)}{\pi r_{mfn}^2}$

NWRA

Since 1984

MIF Modeling Equation Integration

Fentzke and Janches, JGR, Submitted 2007

Electron Threshold

Fentzke and Janches, JGR, Submitted 2007

Altitude distributions

Altitude distributions

NWRA Since 1984 Differential Ablation of Meteoroids CoRA

5 µg 20 km s⁻¹

N	N	R	A

FDTD Radar Simulations

Courtesy of Lars Dyrud

Some promising results

CoRA

Fentzke and Janches, JGR, Submitted 2007

NWRA

Model/Observation Flux Comparison at AO

Number of Meteors

Number of Meteors

More promising results

Fentzke and Janches, JGR, Submitted 2007

NWRA Seasonal Variability of MIF over Arecibo

Diurnal Variability of MIF over Jicamarca CoRA **NWRA** Since 1984

NWRA Seasonal Variability of MIF over Jicamarca

_ Dirunal Variability of MIF over Sondrestrom CORA

NWRA

Janches et al., JGR, 2006

NWRA Seasonal Variability of MIF over Sondy

CoRA

Figure 12
Global, Seasonal and Diurnal Variability

NWRA

CoRA

Janches et al., JGR, 2006

Conclusions and Final Remarks

CoRA

NWRA Since 1984 Conclusions and Final Remarks CoRA

In the last decade we have made crucial progress towards the understanding of the meteoric mass flux in the upper atmosphere

NWRA Since 1984 Conclusions and Final Remarks CoRA

In the last decade we have made crucial progress towards the understanding of the meteoric mass flux in the upper atmosphere

We have/are collected/ing large data sets , developed/ing astronomical, chemical and plasma models of meteor populations and atmospheric interaction

NWRA Since 1984 Conclusions and Final Remarks CoRA

In the last decade we have made crucial progress towards the understanding of the meteoric mass flux in the upper atmosphere

We have/are collected/ing large data sets , developed/ing astronomical, chemical and plasma models of meteor populations and atmospheric interaction

We are very close to accurately understand how much, when and where meteoric mass is deposited in the MLT