IONOSPHERE/THERMOSPHERE/MAGNETOSPHERE:
ITM ELECTRODYNAMIC COUPLING

J.D. Huba

Plasma Physics Division
Naval Research Laboratory
Washington, DC

2008 CEDAR Student Workshop
Zermatt, Utah
June 16, 2007

Acknowledge: G. Joyce, S. Slinker, G. Crowley, S. Sazykin, R. Wolf, R. Spiro
Research supported by ONR and NASA



ITM SYSTEM

lots of physics
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ITM CURRENT SYSTEM

simplified picture
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ELECTRIC FIELD PENETRATION

global penetration [Kelley et al., 2003]
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STORM-TIME M-I EFFECTS

equatorial ionosphere impact [Basu et al., 2001]

DMSF’ F1 4/F15 Ground Tracks - 15/16 July 2000

@ Magnetic storm of July 15, 2000

@ Large bite-outs of electron
density in the equatorial region
after sunset (e.g., enhanced
fountain effect)

@ Strong scintillations at 250 MHz
and L-band

@ Strong upward and southward
drifts at 600 km (ROCSAT)
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ESF IMPACT ON RF PROPAGATION

combined optical and propagation data: Jonathan Makela
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STORM TIME IMPACT ON NORTH AMERICA

Highly Enhanced Total Electron Content and GPS
Phase Fluctuations During October 30, 2003 Storm

GPS outage region

Intense GPS Phase Fluctuations (Delta TEC/MIN ) Occur in the Auroral Region
and along the Storm Enhanced Total Electron Content (TEC) Gradient. GPS
outage caused WAAS to be non-operational for 11 hours

(Su Basu et al., GRL, 2005,
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link to Space Weather
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FOLLOW-UP LINK
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MAIN IONOSPHERE DRIVERS
plasma transport

@ lon Velocity
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@ Electric field: E
@ Neutral wind: V,,



MAIN IONOSPHERE DRIVERS
plasma transport

@ lon Velocity

\z 1
0 i=——VPi+ —E+ —
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@ Electric field: E
@ Neutral wind: V,,

@ Not independent drivers!



ELECTRODYNAMIC COUPLING
based on current conservation

V-JI=0 J=0cE — V.cE=0
Field-line integration: [V -cEds =0
V- -EV® = S(J|, Va, )
E=-Vo
@ >: Field-line integrated Hall and Pedersen conductivities

e J|: Magnetosphere driven

e V,,: Solar and magnetosphere driven



DERIVATION OF POTENTIAL EQUATION

some gory details 1: perpendicular current

@ Step 1: calculate J

J=e(n;Vi —n.V,)
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some gory details 1: perpendicular current
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DERIVATION OF POTENTIAL EQUATION

some gory details 1: perpendicular current

@ Step 1: calculate J

J=e(n;Vi —n.V,)

@ Step 2: calculate V,,

OVa __lyp, i fapy

P
ot Po. Me  MaC

VoxB+g

Van V V Zl/a] V V

@ Step 3: simplify V,, equation

Ca Ca

0= E +

V(y X B an,(Va - Vn)
Mea mecC



DERIVATION OF POTENTIAL EQUATION

some gory details 2: perpendicular current

@ Step 4: solve for V, take (B =B e,)

1 CE V(Y’”, A V(X'", CE V(JL”,
Vo( = T 9 JA9 =y V'n ] =Y VTL
T+ 02,/ KB*QQ )Xe . (3*% )]




DERIVATION OF POTENTIAL EQUATION

some gory details 2: perpendicular current

@ Step 4: solve for V,, take (B = B e,)
1 CE V(Y’H, A V(X'", CE V(Jt”,
Vo= ey V. z Y A\
1+12,/% KB*QQ )Xe +Qa(3+sza )]

@ Step 5: solve for J from definition

B B
J=op <E + =V, x éz) +opy (Vn —E x éz>
[ Cc
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CONDUCTIVITIES

typical values and spatial dependence

UT 23:50 0.0e+00 2.0e+06  4.0e+06

LT 16:56  Electron density (cm™)
1000

800

600

400

Altitude (km)

200

0
-60 -40 -20 0 20 40
Geographic Latitude

- m —
1.0e-04  2.0e-04 UT 23:50 2.0e-08  1.0e-04  2.0e-04

UT 23:50 2.0e-08
LT 16:56  Pedersen conductivity (mho/m) LT 16:56  Hall conductivity (mho/m)
1000

Altitude (km)
Altitude (km)

—40 -20 0 20 40 60

-20 0 20 40 60 -60
Geogrophic Latitude

Geogrophic Latitude



DERIVATION OF POTENTIAL EQUATION

gets uglier: dipole coordinates

B B
Jp=op (Ep + (,Vmp) +on (Erb + (,Vnp>

B B
J¢ =op <E¢> - (.Vnp> +om (Ep + (.Vn<:>>




POTENTIAL EQUATION
current conservation

V-J=0

in dipole coordinates

0 0
= (hghgJp) + o= (hpheJq) + (h hgJg)| =0

Ip dq ¢
where
o sin® 0
hp = —1/2
(14 3cos?0)
r3 1
hq = *2—1/2
7o (14 3cos?0)
he =rsind



POTENTIAL EQUATION

field-line integration




THE POTENTIAL EQUATION
at last

@ Electric field in dipole coordinates: E = V®

A 09 1 09

P rosin® 0 dp ¢ rsinf ¢




THE POTENTIAL EQUATION
at last

@ Electric field in dipole coordinates: E = V®

A 09 1 09

P rosin® 0 dp ¢ rsinf ¢

o Substitute h's, E's into potential equation

0 o 9% 9T0d 0 9B 9 0
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Pore e, T 86 p 96 op og " 86 Hop
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M High latitude currents

Neutral winds



AND DEFINITIONS ...

field-line integrated parameters

A 1 1
pr:/apadq Zp,j):/O'pmdq ZH:/UH[ZCZ(]

B
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CONDUCTANCES

typical values and spatial dependence
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THE POTENTIAL EQUATION
alternative formulation

@ Derivation in (p, ¢) space: solved in the magnetic equatorial
plane (essentially (7, ¢) space)

@ Can also be solved in (6, ¢) space: map magnetic apex height
(p) to base of the field line to define associated latitude 6

@ Richmond (magnetic apex model) and Heelis (Plan. Space
Sci. 22, 743, 1974)



PUTTING IT ALL TOGETHER
pieces of the picture

Magnetosphere

K

Potential Solver

Thermosphere
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MAGNETOSPHERIC CURRENTS

Current Structure for Bz=-5nT
with RCM coupling

H Region 1 Current
Region 2 Current
Tail Current
Chapman-Ferraro Current

June 26, 2005 Sazykin--Ionospheric E-Fields--CEDAR Student Workshop

origin of J): flow shear




EXAMPLE OF MODELS
not all-inclusive

LFM BATSRUS GGCM (physics)

Magnetosphere —— | AMIE (data driven)

Weimer (empirical)

-_

TIMEGCM CTIPe (physics)
Thermosphere [ ——
NRLMSIS HWMO07 (empirical)




SELF-CONSISTENT COUPLING: PRESENT
at NRL/RICE/ASTRA

LFM Dpep RCM

Outer magnetosphere Inner magnetosphere

CIJ\\Z//CID

T NnThVi

TIMEGCM
Thermosphere




COUPLED SAMI3/RCM AND SAMI3/LFM MODEL
Self-consistent coupling through ®

@ The fundamental coupling of LFM/RCM and SAMI3 is
through the solution of the potential equation

V- \Z,J_J VO = J
SAMIS LFM/RCM
— SAMI3 provides the ionospheric conductance to LFM/RCM
— LFM/RCM solves the potential equation to determine ®
— LFM/RCM provides the ¢ to SAMI3
— SAMI3 and RCM use @ to calculate the electric field
— Transport the plasma



SAMI3/LFM RESULTS
17 April 2002 storm

17 Apr 2002 i ”k M e
uT 09:09 PRl ’; s E
North Pole South Pole . % | t ‘\’ WAL Bx
‘ E
W n
i
M 1
oy 4‘*’\}“ il AT NP
I By
[
" ‘”H Wl
Vi T e o
S
) \‘1"‘ ‘ Bz
|
(’j L
0.0 50.0 100.0 i h‘ ‘\‘r,
P -
.
J
r! ’ rho
"»‘1 M\ i




SAMI3/RCM RESULTS
17 April 2002 storm

TEC
uT 16:00 17 Apr 2002




SAMI3/RCM RESULTS
17 April 2002 storm

UT: 2100 TEC and Potential

LT: 0000
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PENETRATION FIELD

time dependence (different simulation)

@ Vertical E x B drift

@ Time-dependence of ® important:
integrated effect

@ Decay time ~ 30 — 60 min following

impulse 20
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DILEMMA: HIGH LATITUDE COUPLING
LFM/RCM

o LFM

o Restricted to magnetic latitudes > 55°
e Potential ® = 0 on boundary
e Limited resolution of region 2 current system

e RCM

Restricted to magnetic latitudes < 75°
Potential ® specified on boundary

Limited resolution of region 1 current system
Dipole field aligned with earth’s spin axis
Interhemispheric symmetry (B, = 0)

@ Resolution: blend/average currents from both codes and use
resulting ® in both codes?



DYNAMO ELECTRIC FIELD

from Naomi Maruyama (CTIPe)
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SUMMARY
ITM coupling

@ ITM electrodynamic coupling can have a major impact on the
low- to mid-latitude ionosphere during storms
o Penetration electric fields can lead to large increases in the
daytime mid-latitude TEC (storm enhanced densities) as well
as large decreases in the post-sunset equatorial region
e Dynamo electric field can be strongly modified by storm driven
neutral winds (coupling to the thermosphere required)

@ Other coupling issues
o High-latitude Joule heating
e lonospheric outflow



