GRAVITY WAVE SEEDING OF EQUATORIAL SPREAD F

J.D. Huba, J. Krall, T.-W. Wu, D. Fritts* and D.L. Hysell** Plasma Physics Division Naval Research Laboratory Washington, DC CEDAR Workshop Boulder, CO June, 2013 * GATS, Inc. ** Cornell

Research supported by NRL Base Funds

ISSUES

- day-to-day variability of equatorial spread F (ESF) is not understood
- one suggestion is seeding (or lack of seeding)
- possible seeding mechanisms
 - vertically-sheared plasma flows
 - collisional shear instability
 - $\bullet\,$ sporadic $E\,$ layers
 - traveling ionospheric disturbances
 - gravity waves
- investigate last seed using NRL model SAMI3/ESF

PLASMA DYNAMICS

ion velocity

$$\begin{split} \frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i &= -\frac{1}{\rho_i} \nabla \mathbf{P}_i + \frac{e}{m_i} \mathbf{E} + \frac{e}{m_i c} \mathbf{V}_i \times \mathbf{B} + \mathbf{g} \\ &- \nu_{in} (\mathbf{V}_i - \mathbf{V_n}) - \sum_j \nu_{ij} \left(\mathbf{V}_i - \mathbf{V}_j \right) \end{split}$$

- gravity wave wind perturbations affect
 - perpendicular motion through E (potential eqn)
 - parallel motion via $u_{in}V_n$
- impact on E most important for ESF triggering

- analytical expressions for gravity wave winds
- numerical data for gravity wave winds

GRAVITY WAVES

high-frequency, deep atmosphere dispersion relation:

$$m^{2} = k^{2} \left(\frac{N^{2}}{\omega_{i}^{2}} - 1 \right) - \frac{1}{4H^{2}}$$

where

 $\begin{array}{ll} k = 2\pi/\lambda_x & \lambda_x: \mbox{ horizontal wavelength (= 250 \mbox{ km})} \\ m = 2\pi/\lambda_z & \lambda_z: \mbox{ vertical wavelength } \\ N = 2\pi/T_B & T_B: \mbox{ buoyancy period (= 600 \mbox{ sec})} & \mbox{ perturb } \\ \omega_i = 2\pi/T_{GW} & T_{GW}: \mbox{ intrinsic gravity wave period } \\ H & H: \mbox{ scale height (= 30 \mbox{ km})} \end{array}$

zonal and vertical drifts

$$u' = Au_0 \sin(kx + mz - \omega t) \qquad w' = -\alpha u'$$

GRAVITY WAVES PARAMETERS

estimate vertical wavelengths and velocities

case	N/ω_i	T_{GW} (min)	λ_z (km)	$c \; (m/s)$	w'/u'
1	6	60	43	69	-0.17
2	3	30	90	139	-0.35
3	2	20	156	208	-0.60
4	1.5	15	278	278	-1.10

SAMI3/ESF simulations:

- uniform zonal wind (100 m/s)
- imposed wind perturbations (w'/u')
- centered at lat = 10° and alt = 250 km
- longitudinal width = 8° grid (nz, nf, nl) = (101, 202, 192)

PERTURBED REGION

SAMI3 RESULTS

contour plots of the 4 cases

HYSELL RESULTS

3D electrodynamics code (case 4)

$\lambda_x = 250 \text{ km}, \text{ T} = 60 \text{ min.}, \lambda_z = 43 \text{ km}, \text{ u}' = 100 \text{ m/s}$

SAMI3 RESULTS

proxy for growth rate: max upward velocity

- onset time roughly the same for all cases
- initial perturbation largest for longest vertical wavelength case (i.e., shortest gw period)
- case 4: onset to saturation \sim 60 min

NUMERICAL WAVE DATA

extent of perturbation

SAMI3 RESULTS

no hall and hall

HYSELL RESULTS

3D electrodynamics code (after 60 min)

perpendicular plane, +60 min.

NUMERICAL WAVE DATA

in-phase and out-of-phase in conjugate hemisphere

NUMERICAL WAVE DATA

in-phase: 'normal' growth rate - out-of-phase: reduced growth rate

- gravity waves can initiate ESF
- gw perturbation velocities u' and w' affect electrodynamics and generate density irregularities
- large vertical wavelength modes most effective (few hundred km)
- location and phase of gravity waves relevant
- do not need gravity waves at 200 400 km to be effective waves at 100 200 km can affect electrodynamics (dynamo) to initiate spread F