<u>Solar EUV Spectral</u> Irradiance: Measurements

Frank Eparvier eparvier@colorado.edu

LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS UNIVERSITY OF COLORADO AT BOULDER

Outline

- Introduction to Solar EUV Irradiance
- TIMED-SEE and SDO-EVE
- New Insights into EUV Sun from EVE
- The Future of EUV Measurements
- Summary

The Solar Irradiance Spectrum

- Spectrum looks like blackbody (~5700K) in visible
- TSI is integrated total (~1361 W/m²)
- VUV accounts for <0.1% of TSI, yet can account for up to a third of TSI variability.

Measurements of EUV Spectral Irradiance

EUV irradiance measurements have been sparse.

Accuracy, precision, cadence, wavelength resolution and coverage have been less than ideal.

The Solar EUV and XUV

- The solar EUV and XUV radiation consists of emissions from the solar chromosphere, transition region, and corona
- EUV/XUV is < 0.01% of the total solar irradiance (TSI: >99% from photosphère)
 - But EUV/XUV variations are a factor of 2 - 100 (wavelength dependent), whereas TSI variations are typically only 0.1%

(°K)

Irradiance Varies on All Timescales

TIMED-SEE

TIMED-Solar EUV Experiment

- Launched Dec 7, 2001
- Still operating (data version 11)

SEE Measurements:

- 27-195 nm at 0.4 nm resolution (EGS)
- <27 nm broad bands (XPS)
- 3% duty cycle (3-minutes every 96 minutes)

SEE Data Products:

- Daily and 96-minute spectra at instrument and 1-nm resolution from Jan 22, 2002 to the present.
- Note: product shortward of 27 nm is a spectral model fit to the broadband measurements
- Data available at http:://lasp.colorado.edu/see

SEE Gave us Dataset from Solar Max through Min

SEE Helped Understand Spectral Variability

Courtesy Phil Chamberlin

What We Don't Know From SEE

- Short Wavelength Spectral Variability & Absolute Value
 - <27 nm is from broadbands
 - Lots of ambiguity in interpreting data without spectral knowledge
- Short Timescale Variability
 - Low time cadence measurements (96-min)
 - Small sample of flares from SEE (~35 flares)

EUV Variability Experiment

- Launched Feb 11, 2010
- Still operating

EVE Measurements:

- 6-106 nm at 0.1 nm resolution (MEGS)
- Broad bands and flare location (ESP)
- 0-7 nm low-res images (SAM)
- ~100% duty cycle (10-sec for MEGS and 0.25-sec for ESP)
- Note: MEGS-B operates 5 min/hour and for campaigns

• EVE Data Products:

- Daily and 10-sec spectra at 0.1 and 1-nm resolution from May 1, 2010 to the present, broad bands at 0.25-sec resolution
- Space weather data products available at ~3-minute latency
- Current data Version 3 available
- Data available at http:://lasp.colorado.edu/home/eve

EVE Shows Quiet Sun EUV Fluctuations

EVE continues SEE Long-term Data Series

EVE and SEE are Similar, but Different

EVE has High Spectral Resolution

EVE Shows Flares Produce New Lines

Movie by Harry Warren

EVE Shows Flares are Complicated

- Different types of flares behave differently in EUV
- Different emission lines peak at different times based on flare type and line temperature
- Some emission lines dim during flares (w/ CMEs)
 - Some flares have EUV "late phase" up to hours after the main phase of the flare

The Future for EUV Measurements

- TIMED prime mission ended in 2004, but we're still going (with little to no money for SEE)
- SDO prime mission is until 2015, will propose for extended mission
- GOES-N,O,P have broadband EUV (broadbands since 2009)
- GOES-R,S,T,U (earliest launch 2015) will have new EUV sensors

EUVS Concept for GOES-R

- Measure proxies that are used to model the full EUV range (5-125 nm)
- Three EUVS channels that provide accurate proxies for the emissions from the chromosphere (CH), transition region (TR), and corona (COR)
 - XRS provides fourth proxy for hot coronal continuum emissions during flares
- EUVS Irradiance Data Product:
 - 5-115 nm spectral irradiance in 5-nm bins + Ly α
 - 30-second cadence (measurements on 10-sec cadence)
 - <20% accuracy through mission

EUVS Measurements

• Primary Measurements Used in Spectral Model:

- Chromospheric: MgII C/W
 (EUVS-C), CIII 117.5 nm and
 CII 133.5 nm (EUVS-B)
- Transition Region: Lyalpha 121.6 nm and SiIV/ OIV 140.5 nm (EUVS-E), Hell 30.4 nm and Hell 25.6 nm (EUVS-A)
- Corona: FeXV 28.4 nm (EUVS-A)
- Hot Coronal: 0.1-0.8 nm and 0.05-0.4 nm (XRS)

EUVS Proxy Model is based on TIMED-SEE and SDO-EVE and uses all measurements available from EUVS

Summary

- Solar EUV irradiance matters for atmospheric science
- EUV is complicated temporally and spectrally → a single, daily proxy index is not enough
- SDO-EVE is helping us understand solar EUV irradiance variability
- NOAA GOES will build on knowledge gleaned from past EUV measurements and will continue EUV monitoring into the future