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What are the Mid-Latitudes?

The mid-latitudes (sometimes midlatitudes) are the areas on earth between
the tropics and the polar regions, approximately 30° to 60° north or south of
the equator. The mid-latitudes are an important region in meteorology, having
weather patterns which are generally distinct from weather in the tropics and
the polar regions
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Northwest Territories, Canada




Socorro New Mexico 20 Nov 2003

(from astronomy picture of the day)



West Texas 15 Sept 2000
near El Paso Texas

(from astronomy picture of the day)



Storm-time Appelton Anomaly
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Why do we care about
conductivities?

lonosphere is a plasma with an embedded magnetic field.

V-lo-(Eir.t) + Ulr,f) x B|=10

“The resulting electric field is as rich and complex as the driving wind
field and the conductivity pattern that produce it”’, Kelley, Ch. 3



Equations of Motion

Parallel equation of motion

Perpendicular equation of motion




Collision Frequencies

lon and electrons collide with neutrals as they gyrate. How they move in
response to electric fields depends very much on the collision frequency
relative to the gyro-frequency.




Conductivity
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Ionospheric Trough

Major Feature of the F-region
ionosphere that forms at the
boundary between the mid-
latitude and auroral
ionosphere.

Primarily occurs in darkness

Important features:
equatorward and poleward
edges separated by the trough
minimum

Rodger, The Mid-Latitude Trough — Revisited, MIDD



Electron density variation at middle and subauroral latitudes:
Trough
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Variation of Trough Location as a function of Kp
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lonospheric Dynamo

Produced by movement of charged particles of the ionosphere
across B

Motion is driven by the tidal effects of the Sun and the Moon and
by solar heating.

The ionospheric dynamo is thus controlled by two parameters: the
distribution of winds and the distribution of electrical conductivity in
the ionosphere.

Maximum conductivity:

Transverse conductivity, especially Hall, confines to a
rather narrow range of height (~ 125 km), the so called
dynamo layer




Thermospheric Winds and Tides

® Thermospheric Neutral Winds

® Tides — Largest atmospheric tides are the
diurnal and semidiurnal tides driven by solar
heating; Next is the semidiurnal gravitational
tide.

" Tidal oscillations propagate upward, and associated
wind speed amplitude grows

" Diurnal tides can propagate vertically only below 30°
degrees latitude

" Semi-diurnal tide is dominant at latitudes greater than
30° degrees latitude (mid-latitudes)



Ionosphere Currents
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® Using the Arecibo ISR,
Behnke (JGR, 1979)
observed variations in the
height of the F layer

® 50 km in height over 10
km In horizontal
direction

B Spatial structure inferred
from “beam swinging” of
the ISR

= Aligned from NW to SE
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F-layer Height Bands (1973)

® Properties:
= Ah__ ranged from 25 to 60 km

" @ranged from 218° to 265° (east of north)
" Velocity ranged from 18 to 61 m/s

® Behnke, 1979 interpreted results in terms of
the Perkins instability:
= Equilibrium of nighttime F layer supported by ExB
" Unstable to north-south electric field

" |nstability is seen as rising and falling bands of
lonization



Nighttime MSTID Observations (TEC,
Airglow) [Saito et al., 2001]

Ol 830-nm emission 99 00 00 | 05/22 98 TEC [10%/
224‘05!1 98 2201 JS'I_'__ T . .




2002 (630nm airglow)

20

10
Devintion (%)

im i

0

Egeg ¢ T —
126 128 130 132 134 1326 128 130 132 124 126 128 130 132 134
Long, {deg.} Long, {deg.} Long. {deg.}

(b) Darwin

—8 <14:50UT

40

20

B
—
g
I.E'_

E
=1

0

L L

": ) - o o ( : i oy
126 128 130 132 134 126 128 130 132 134 126 128 130 132 134
Long, {deg.) Long. {deg.) Long, (deg.)

(c) Sata (left) and conjugate of Darwin (right)
14:4BUT l«-i:El}UTIﬁ:{}EUT 15:IEUT

o

70
40

10
Dewiation (%)
i 20
Deviatlon (%)

. . G 'f'. 1 (] P T
128 128 130 132 134 128 128 130 132 134 126 128 130 1332 134
Long. (deg.} Long. (deg.} Long. (deg.}

Otsuka et al., JGR 2004




Tsugawa et al., URSI GA 2008

02:43:30(U°T) 07/20 2006

TEC [10"/m™]

°© Detrended TEC map (60-min window)
° 0.15°x0.15° with 7x7 smoothing (running average)




Tsugawa et al., URSI GA 2008
Wavelength of 200-500 km
Propagation velocity of 50-150 m/s
Southwestward propagation
High occurrence rate in summer and winter

No clear correlation with geomagnetic activity



Width of MST!_D’S wavefront Finite NW-SE structure

QI 630.0 nm emission . _‘“' -
270 km _ Northwestward E,

.l".- l
Southwestward propagation

Kelley and Makela,
GRL, 2001

Finite NW-SE
Structure with
Low EPF

Figure 2. Polarization of a low Pedersen conductivity
region in the presence of a wind-driven current.

Tsugawa et al., URSI GA 2008
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GPS Loss of Lock at Millstone Hill 15 July 2000

Local Westward lon Velocity at Millstone Hill
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TEC Disturbances on 15 July 2000
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GPS Total Electron Content Map

Lilustration of Storm Enbanced Density
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TOTAL ELECTRON CONTENT STORM NUMBER = 22
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Mechanisms contributing to positive
storms at mid-latitudes
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Mid-latitude F2 Layer is Uplifted

The crucial point is that the increase in the ionization
density is preceded by a significant increase in the height
of the F2 layer ......... This prior uplifting of the
lonosphere is typical and is almost always observed.
Therefore, any explanation of positive ionospheric

storms must be consistent with this observation.

Prolss, lonospheric Storms at Mid-Latitudes: A Short Review MIDD



Enhanced TEC Region observed in the Mid-Latitudes
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Two Mechanisms for uplifting
plasma in midlatitudes
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Storm-time Electrodynamics

During geomagnetically active time
periods, electric fields In the
ionosphere are thought to originate
from:

" a disturbed wind dynamo, and

" those of magnetospheric origin
® Penetration Electric Field
® Subauroral Polarization Stream

Huang, et al., EOS, 2006



References

B Definition of Storm-Time Penetration Electric Fields:
Chaosong Huang, Stanislav Sazykin, Robert Spiro, Jerry
Goldstein, Geoff Crowly, J. Michael Ruohoniemi [EOS,
87(13),doi:10.1029/2006EO 130005, 20006]

® The Sub-Auroral Polarization Stream (SAPS) as defined
by Foster and Burke [EOS, 83(36), 393, 2002]

® The ionospheric disturbance dynamo, Blanc and
Richmond, M. Blanc and A.D. Richmond, JGR 85 (1980)



Disturbance Wind Dynamo

The direct penetration of the high-latitude electric field to
lower latitudes, and the disturbance dynamo, both play a
significant role in restructuring the storm-time equatorial

lonosphere and thermosphere.

Although the fundamental mechanisms generating each
component of the disturbance electric field are well
understood, it is difficult to identify the contribution from
each source In a particular observation.

Maruyama, N.; Richmond, A. D.; Fuller-Rowell, T. J.; Codrescu, M. V.;
Sazykin, S.; Toffoletto, F. R.; Spiro, R. W.; Millward, G. H
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Disturbed Dynamo vs. Penetration
Electric Fields

® Both penetration and neutral disturbance dynamo
electric fields occur at low latitudes during magnetic
storms.

B For the first several hours, penetration electric fields can
cause ionospheric disturbances simultaneously at all
latitudes and dominate the dayside ionospheric
evolution.

® |n contrast, large-scale atmospheric gravity waves take
two to three hours to travel from the auroral zone to the
equatorial ionosphere, and a significant propagation
delay can be identified at different latitudes.

Huang, et
al., EOS,

PN



Storm-time Electric Fields

= Magnetospheric convection is enhanced following a southward
turning of the interplanetary magnetic field (IMF). The initial
high-latitude electric field will penetrate to the equatorial
latitudes

= Strong storm-time penetration eastward electric field
uplifts equatorial ionosphere

® Enhances the Equatorial anomaly

" Cross-tail electric fields energize and inject particles into the
inner magnetosphere forming the disturbance Ring Current

= Sub-auroral polarization Stream forms — which is an
electric field that is radially outward at the equator and
poleward at higher latitudes. Where the SAPS field
overlaps the region of enhanced electron density in the
mid-latitudes

B Storm-Enhanced Density (SED)



Ring Current / SAPS/ SED Plume

(Sub Auroral Polarization Stream Electric Field)
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® Duskside Region-2 FACs

close poleward across low-
conductance gap e

® SAPS: Strong poleward
Electric Fields are set up across
the sub-auroral ionosphere
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of the ionosphete and the outer N

plasmasphere i B

LOW 2

SAPS E FIELD




€
=
=
E
[1¥]
-
e
=
o
=
[
-
=

20 22 00 02

Magn;tic Local Time

Figure 6. Bin-averaged westward ion velocity derived from Millstone Hill scans for Kp [5",6"]
for which SAPS has been identified. Scans at each MLT have been shifted in latitude such that
the SAPS peak is aligned with the average SAPS latitude for the corresponding MLT and Kp.
The heavy black curve indicates the average SAPS peak position.

Foster and Vo (2002)



Eastward E Field Uplifts Equatorial lonosphere

T “é&;&”eié'?mg@?;’%%%wxwﬂw@ym-
TR
e - e 9

F Gl o
i s
&Wﬁwggﬁw . L
y.«vw' -

. xwggﬁgg@?k
. wgﬂ”gggzgﬁggg’*g”w@w* 2
SR

SAPS Erodes Outer Plasmasphere

Figure courtesy of J. Foster



GPS TEC

Key West

Downwelling

ol
=
=
O
LL
E=

|
20

15
UT hours July 15/16, 2000




Fi1z
F15

R
e

S.ﬂ.F"S-?b

o
]
1)
)
o
3
&
Q
- -
{D
=
ﬁ
&
=g
=
==
o
{D

Geodetic Latitude, Deg

40 ' ' '
-150 -100 -50 o 50 100 150 2000 0 2000
Cegrees from solar noon =urmward Crifts { mds)
a0 T T T . .
65° magnetic latitude Fi13
- F14
, 80 Oy
L
-
sol {8 70
':_‘:l -
= 60 kS
2 _ 3
o i L
5 ) S— Sﬁpg*.?
£
| !
m‘ f

50
L
A0t

-150 -100 -50 i a0 100 150 -2000 O 2000
Zurmward Drifts (mdfs)

Cegrees from solar noon



Northern Europe and American Sector SED Plumes

~ MIT Haystack Obscrvatory
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Plasmasphere

extension of ionosphere and part
of the inner magnetosphere.

filled with ionospheric plasma
from the mid- and low latitudes

plasma gas pressure is equalized
along the entire field line.

plasma co-rotates with the Earth
and its motion is dominated by
the geomagnetic field.

Plasma on magnetic field lines
associated with higher latitudes
(~ above 60 deg. geomagnetic
lat.) is convected to the
magnetopause

" A magnetosphere

Quiet conditions - plasmapause may
extend to ~ 7 Earth radii

Disturbed conditions - plasmapause
can contract to ~3 or less Earth radii.
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Plasmaspheric Tails and Storm Enhanced
Density
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IMAGE Data of Plasmasphere
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System-Science Model of Plasma Redistribution

4.Heavy ionospheric plasma

. . reaches the plasma sheet, where
3. Massive amounts of iono-
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5 Jc'inospheric plasma is
,Energlzed by storm
- convection and substorm,
" enhancing plasma pres-
/ sure, which drives the ring
- current system that

connects through the
ionosphere

1.Solar EUV and Joule heating
drives storm enhanced plasma
densities at low latitudes

2. The magnetosphenc ring current

connects to the ionosphere, ‘generating . 2
electric fields that funnel the low-latitude
plasma towards higher latitudes.
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