SNR (dB) - Channel B

Acknowledgements

E. Kudeki D. Hysell R. Varney A. Patra R. Tsunoda M. Oppenheim J. Vierinen J. Garcia

Incoherent and Coherent Echoes over Jicamarca

The echoes

- 150-km echoes
- 150-km junk
- \bullet F₁ echoes
- Kudechoes

- The topic
 - 150-km riddle
 - 150-km puzzle
 - 150-km challenge
 - Esoteric/private
 Science

Site	Dip Lat.	Less Sensitivity ¹	Freq.
Jicamarca/JULIA ²	0.5° S	17 ± 3 dB	50 MHz
Pohnpei	0.3° N	25 ± 3 dB	50 MHz
Sao Luis	2.0° S	~28 ± 3 dB	30 MHz
Gadanki	6.5° N	12 ± 3 dB	53 MHz
EAR	10.0° S	22 ± 3 dB	47 MHz

¹with respect to Jicamarca ISR ²only one in the South hemisphere (geographic)

Other Observations at ~50 MHz

Observations at other frequencies

Main Features

- Daytime phenomena
- Occur between 130-180 km
- Necklace shape (1-5 layers)
- Observed with beams perpendicular to B
- Seasonal occurrence
 - All seasons (Peru, Brazil, India)
 - Summer (Pohnpei).

- Low-latitude observations (as far as 10°S dip lat.)
- Proposed mechanisms: Interchange instability
 - GWs wind-driven
 - Zonal neutral winds and/or vertical E acting on horizontal Ne gradients
- ♦ Vz ~ vertical F-region ExB.
 - ♦ ~150 days/year at Jicamarca

150-km Publications

Consulting with the experts

... and please find a better name ... Honey, how can I get their interest on 150-km echoes?

Show them their relevance!

Relevance to Aeronomy: Publications

Chau and Woodman [2004]

the remaining 30 minutes

• Background

- Main features (published and unpublished)
 - Perpendicular to B observations
 - Observations at HF
 - Naturally Enhanced Ion Acoustic Lines (NEILs)
 - NEILs vs. FAIs.
- Relevance to Aeronomy
- Summary

Equatorial Daytime Valley Region

- Transition region: Upper E molecular ions and lower F atomic oxygen ion.
- Collisions with neutrals start to be less important as the altitude increases.
- E region coupling: magnetic field lines around 140–170 km are mapped to both the north and south E regions that are located just outside the EEJ belt.
- Intermediate layers (metallic ions?) are known to occur at these altitudes but so far they have not been observed at equatorial regions during the day.
- Te/Ti: Large ratios are expected and observed during the day.
- Critical layers. Lower atmospheric waves are suppressed ..
- Maximum photoelectron production rate.

Types of 150-km echoes

SNR (dB) - Channel B

Day-to-day and Seasonal Variability

Fig. 6. Time series of 150-km SNR values: mean (◊), median of higher values (△), and maximum values (●). Measurements were conducted between August 2001 and July 2005. from Chau and Kudeki. [2006]

EW Structure

Courtesy D. Hysell

EW Structure

- 150-km EW structures are wider than typical Jicamarca beams, supporting the early Fawcett, 1999 results, but contrary to the strong zonal asymmetry observed over EAR/Pohpei/Xmas Islands.
- "Blob" motion doesn't represent proper motion.
- EW observed "motion" are a combination of electron density time/ zonal/meridional modulation (neutral winds, GWs, ...)

Courtesy D. Hysell

Daytime Ionogram

F₁ temporal/range behavior

VIPIR D-X lonogram at Jicamarca

Valley Ne and Virtual Height

Daytime Valley Region: HF signatures

from Chau et al., 2010

Daytime Valley Region: HF signatures

from Chau et al., 2010

3.66 MHz signatures

150-km Echoes and Solar Flares

Gadanki Echoes: Necklace vs Intermediate layers

Jicamarca Observations: SNR January 2009

Histogram SNR vs Spectral: January 2009

Histogram SNR vs Spectral Width

Naturally Enhanced Ion-acoustic Lines (NEILs) Oblique vs. Perpendicular Observations

Perp. to B Spectrograms

Oblique spectrogram

150-km Echo Spectrograms [Oblique, Non-DC Bins]

NEILs: NS Structure

NEILs: spectrum asymmetry

SNR Normalized(lineal) [Oblique] 1000 159.8 1.00 0 -1000 0.75 -2000 0.50 1000 144.8 0.25 0 0.00 -1000 -2000 12:05 12:10 12:15 12:20 12:25 Local Time (10-Dec-2004 (345)) What causes the asymmetry?

Parallel currents?

Above 150 km: Spectra is wider and with an oscillating peak with a period ~5-10 min.
Below 150 km: Spectra is narrower, peak is not well defined.

150-km Oblique Parameters

150-km Perpendicular Parameters

NEILs vs FAIs

Histogram SNR vs Spectral Width

Relevance to Aeronomy Important components

Variable	Evidence	
Bottom F1 density gradient	Necklace, Eclipse echoes	
Photoelectrons	Solar dependence, Necklace, Solar Flare, NEILs?	
Gravity waves	"Pearls", "Beads", HF signatures	
Metallic ions	Spectral width "independent" of SNR	
Turbulence	Spectral width ∝ SNR	
Meridional winds	NEILs NS angles, Intermediate layers	
Tides	Intermediate layers	
E region coupling	Pohnpei summer occurrence	
Parallel currents	NEILs asymmetry	
Alfven waves / EM effects	"Fishbone" echoes	

The Six blind Men and 150-km echoes

adapated from http://www.youtube.com/watch?v=iBqgr5xZLz0

Relevance to Aeronomy

Radio Science Plasma Physics

Investigation

- Interferometry
- Bistatic Faraday Rotation
- Meteor-trails
- 150-km echoes
- Small aspect angle IS effects
- Mesospheric echoes
- EEJ, ESF, irreg, μ physics
- Inverse methods

Facility/Instrument Product

Capability

- Radar imaging
- E region densities, winds
- MLT winds
- Comprehensive E-fields
- Coulomb collision
 model
- Perp. IS modes
- Low-power modes
- Full-profile mode

Aeronomy

Contribution

- C/NOFS Science
- ITM Coupling
- SSW
- Storms and PPE
- Photoelectrons
- Enhanced IS
- Therm. grav. Wave
- Topside
- E/F coupling

Relevance to Aeronomy: Understanding the echoes

will require

- Improvement of radar techniques and instruments
- Additional instruments/ measurements
- Finding and testing the plasma/ instabilities and plasma/neutral coupling at work.

e.g., pulsing schemes, inverse theory, higher dynamic range rxs, ..

e.g., AMISR, Heater, in-situ probes (rockets, sub orbital vehicles), ...

> e.g., learning from the heating community, PIC simulators, ...

Relevance to Aeronomy: Understanding the echoes

will require

would allow

- Improvement of radar techniques and instruments
- Additional instruments/ measurements
- Finding and testing the plasma/ instabilities and plasma/neutral coupling at work

- Understanding of fundamental physics.
- Better definition of the daytime Ne at the low latitude valley region
- Measurements of Vx, Te, Ti, and composition of the valley region, with less sensitive radars.
- The understanding of the role of neutral dynamics, including lower atmospheric forcing, not only in the echoes but also in the region.

Where do we stand? (1)

• There are mainly two types of echoes:

- From Field-Aligned Irregularities (FAIs) (the minority at Jicamarca and majority at other less sensitive sites)
- From Naturally Enhanced Ion-Acoustic Lines (NEILs) (majority of echoes at Jicamarca)
- Possible sources of energy
 - Density gradients for FAI + metallic ions
 - Small density gradients + Photoelectrons for NEILs: a kind of kinetic instability process whereby photoelectron energy is channeled to enhance the ion/electron lines off-perp/perp B at meter scales.

Perhaps, in both cases meridional GW action has a way of modulating the enhancement process, e.g., via parallel currents driven in the region.

Variable

Bottom F1 density gradient

Photoelectrons

Gravity waves

Metallic ions

Turbulence

Meridional winds

Tides

E-region coupling

Parallel currents

Alfven waves / EM effects

Where do we stand? (2)

Understanding the enhancement process

- This might be the last frontier for ISR theory, perhaps understand the role of production on ISR:
 - A sort of "production noise" peculiar to the equatorial ionosphere owing to its "distance" (field aligned) from the underlying E-region terminators.
 - Recall that 7-10 min pulsations ("pearls") have an underlying ~10-30 s pulsations (Alfven waves?)

• ... why only at low latitudes and meter scale frequencies?

Variable

Bottom F1 density gradient

Photoelectrons

Gravity waves

Metallic ions

Turbulence

Meridional winds

Tides

E-region coupling

Parallel currents

Alfven waves / EM effects