Radars: Powerful tools to study the Upper Atmosphere

Jorge L. Chau¹ and Roger H. Varney² ¹Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima ²Electrical and Computer Engineering, Cornell University, NY, USA

CEDAR 2009, Santa Fe, June 28-2009

Outline

- How the instrument works?
- Some radar considerations
- Incoherent vs. Coherent Scattering
- What physical parameters can be measured/inferred?
 - Examples from Incoherent and Coherent scatter radars
 - Imaging (resolving space and time ambiguities)
- Data processing and analysis for Underspread targets (by Roger Varney)

Basic Assumptions

- were awake during Prof. Kelley's talk (e.g., no need to introduce the Ionosphere)
- every instrument works under some assumptions. As long as those assumptions are valid, the measurement is representative
- knowledge of basic linear systems (ACF is the Fourier Transform of the Spectrum and vice versa)
- want to explore continuing/becoming a radar student

¿What do we study with Radars?

Radar cross section examples

- Ordinary ship or airplane: tens to hundreds of (meters)²
- Stealth bomber (U.S.): < or ~ a few (mm)² !! (for backscatter)

- A single electron: 10^{-28} m²
- All the electrons in a column 1 x1 x 10 km³ in the ionosphere at h~300 km, where the electron density is ~ 10¹² electrons/m³: (10)(10⁹)(10¹²)(10⁻²⁸) m² = 10⁻⁶ m² = 1mm² !!! But this can be observed (easily) with Incoherent scatter radars!

Radar Equation: Soft target

- Received power dependence
 - Antenna beam shape (antennas, beam forming)
 - Range resolution (rx/tx bandwidth)
 - Volume scattering cross section [area/volume] (medium)

 $V = \Omega R^2 \Delta R$ $G = \frac{4\pi A}{\lambda^2} = \frac{4\pi}{\Omega}$

Signal/Noise Ratio

50-MHz Skynoise from 408 MHz Map

Radar	~PA MW Hectares	T noise (K)	
Arecibo	14	100 Most	sensitive
Jicamarca	16	20,000 Most	powerful
Sondrestrom	0.1	100	
EISCAT Svalbard	0.2	100	
JULIA	0.16	20,000	

Average Power

- In most radars, finite pulses (τ) are sent at regular intervals (Inter pulse period or IPP).
- The pulse length determines the range resolution ($\Delta R = c\tau/2$), the IPP, the maximun unambiguous range ($R_{max} = c IPP/2$)

How can we make use of the available duty cycle?

Pulse Compression!

The basic idea of pulse compression

- Can we transform a long, low power, pulse into a short, high power pulse with the same total energy (same number of joules)?
- And if so, how do we do it?
 - Frequency modulation (chirping)
 - Phase modulation (e.g., Barker, complementary code, alternating codes, ...

Range and Frequency Aliasing

- The usual radar practice of transmitting a series of pulses at regular intervals and sampling the return at regular intervals can lead to "aliasing" in range and/or Doppler shift
- To avoid range aliasing we want to use a large IPP. But to avoid frequency aliasing we need a short IPP
- With some targets, we can find an IPP that satisfies both requirements (Underspread)
 - But for other targets, no such IPP exists. Such targets are called "overspread"

[adapted from *Farley and Hagfors* ISR book]

Upper Atmosphere Radar Applications

Туре	Region	Measurements/ Techniques	Examples
Incoherent Scatter Radars	lonosphere/ Protonosphere	Electron density, ion composition, temperatures and drifts	UAF ISR chain, EISCAT
Coherent Scatter Radars	Lower and Upper atmosphere	Plasma physics, convection tracer, neutral dynamics, interferometry/ imaging	JULIA, SuperDarn, MST, Specular meteor radars, Radar Imagers
lonosondes	lonosphere Bottomside	Plasma concentrations, "drifts"	Digisondes, CADI, VIPIR,

Incoherent vs. Coherent Scattering Radars

Description	Incoherent	Coherent
Power-Aperture	Large	Varies
Target	Volume-filling	Varies (volume filling, field-aligned, point- like,)
Cross-section dependence	N, Te, Ti, Vz, Vx, Vy, %	Varies
Cross-section "strength"	Equivalent to a dime in the F region	Varies (e.g., EEJ is 40-60 dB stronger than IS)
Upper atmospheric parameters	Most of them measured	Most of them inferred
Overspread/ Underspread	Mostly overspread	Both
Operations	Few days a year	Long term

Coherent and Incoherent Echoes

Sun Aug 15 08:13:04 2004

[from Hysell et al., 2006]

What physical parameters can be measured/ inferred?

- From "conventional" measurements
 - Power Relative Plasma density
 - Spectrum/ACF shape Ionospheric parameters
 - Spectrum/ACF "moments" ??
 - Multiple beams Vector velocities/Electric fields
- From "unconventional" measurements
 - Polarization Faraday rotation Absolute Plasma density
 - High bandwidth Plasma line Absolute Plasma density, Temperature
 - Multiple antennas Interferometry/Imaging Spatial/ Temporal discrimination

Spectra/ACF Fitting

[[]from Nicolls et al., 2008]

Measured ISR Parameters from Ion line

Altitude-time plots of

- Electron density
- Ion temperature
- Electron temperature
- Ion velocity

Ion, Plasma, Gyro lines

Measurable Parameters Flow Diagram

Mapping the global convection pattern

Line-of-sight velocities from first moment

Fitted potential pattern

[Ruohoniemi and Baker, 1998]

Coherent echoes below 200 km

10

5

0

-5

-10

-15

SNR map West beam 160 140 120 100 range (km) 80 60 40 20 10 12 16 8 14 L.T. (hr) Jan27,2009

- ExB drifts from 150-km first moment.
- Plasma physics from EEJ spectra
- Plasma physics and lower thermosphere winds from nonspecular meteor trails
 - (see highlight talk by M. Oppenheim)
 - Mesospheric winds from mesospheric echoes

Imaging with ISR dishes

- Each positions is observed with 1,500 consecutive pulses, i.e., every few seconds
- Main assumption: spatial changes are "slow"
 - When assumption is not good, fast beam-steering, multi-volume observations are needed:
 - AMISRs
 - EISCAT 3D

(see talk by J. Foster)

[Courtesy of A. Stromme]

ESF RTDI: Slit camera interpretation

Slit-camera Analogy and Problems

- In some applications like races it is useful
- In many other applications it provides misleading results:
 - Slow structures are stretch out
 - Fast-moving structures are compressed.
 - In general, it is difficult to discriminate space-time features.

Aperture Synthesis Configuration

ESF Imaging: Narrow view

ESF (ME)

Imaging: Wider View

2303/03/01 9:58:18 69.0 10 -8 500 68.5 180 68.0 460 67.5 440 0.78 (quff (quff N) 480 400 (km) 380 300 Altitude 65.5 340 65.0 320 Wed Oct 1 23:39:02 2008 300 280 Latitude (deg N) 0.81 085 240 055 10.0 200 18.0 127 253 -67.5 -68.0-67.0 -66.5-66.C Longitude (deg E)

[Courtesy of D. Hysell]

Underspread Targets

Incoherent

- Perpendicular to B
- Collisionally Dominated (e.g. D-region ionosphere)

Coherent

- Turbulent Layers (e.g. MST Radars)
- Polar Mesospheric Summer Echoes (PMSE)
- 150-km Echoes

• Assume each range is independent

• The returns from each range form a time series sampled once per IPP

Binary Phase Codes

Barker Codes

Coded Pulse

Matched Filter

Range Sidelobes

Complementary Codes

Autocorrelation Functions

Pulse to Pulse Spectra

- Nyquist Frequency: 0.5/IPP
- Spectral Resolution: 1/(n*IPP)

Typical Numbers

JRO Perp. B

- IPP = 6.66 ms
- Nyquist = 75 Hz (225 m/s)
- N = 64 pulses
- Frequency Resolution = 2.35 Hz (7 m/s)

PFISR D-region

- IPP = 3 ms
- Nyquist = 167 Hz (56 m/s)
- N = 128 pulses
- Frequency Resolution = 2.6 Hz (0.87 m/s)

Example Spectra

Aliasing

- Long tails of the spectra will alias
- When fitting, fold the model to compensate

Aliasing

- Aliasing is more severe at higher altitudes
- Underspread processing is not appropriate

Statistics of Radar Signals

Received voltage is a Gaussian random process

Statistical Quantities

Definitions

- Variance (Power):
- Autocorrelation:
- Power Spectrum: <u>Estimators</u> $\hat{P} = \frac{1}{K} \sum_{i=1}^{K} |V_i|^2$

$$\hat{R}(\tau) = \frac{1}{K} \sum_{i=1}^{K} V_{i1} V_{i2}^{*}$$

 $\hat{S}(\boldsymbol{\omega}) = DFT\{\hat{R}(\tau)\}$

$$P = E[|V|^{2}]$$

$$R(\tau) = E[V^{*}(t)V(t+\tau)]$$

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau)\exp(-i\omega\tau)d\tau$$

Variance of Estimators

$$\hat{S} = \hat{P} - N$$
$$\delta\hat{S}^{2} \approx \delta\hat{P}^{2} = \frac{(S+N)^{2}}{K}$$
$$\frac{\delta\hat{S}^{2}}{S^{2}} = \frac{1}{K}\frac{(S+N)^{2}}{S^{2}}$$
$$\frac{\delta\hat{S}}{S} = \frac{1}{\sqrt{K}}\left(1 + \frac{1}{SNR}\right)$$

- Strive for SNR=1
- Little benefit from SNR>1
- A single estimate has over 100% error
- Some amount of incoherent integration is always necessary

Incoherent Integration

Useful Links

- ISR Student Workshop (CEDAR 2006)
 - <u>http://cedarweb.hao.ucar.edu/workshop/archive/2006/</u> <u>agenda_2006.html</u>
- 2nd AMISR Science Planning workshop
 - <u>http://www.amisr.com/meetings/2008/</u>
- Incoherent scatter radar book by Farley and Hagfors, in progress.