Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Tutorial Session Introduction

Han-Li Liu
High Altitude Observatory
National Center for Atmospheric Research

Project Goals

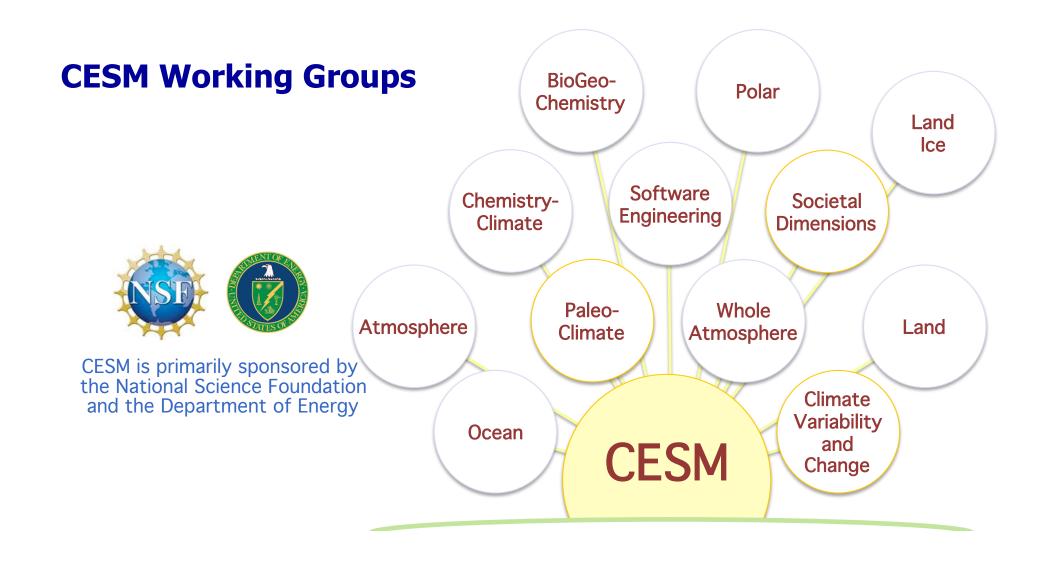
- Whole Atmosphere: Earth's Surface to the upper thermosphere/base of exosphere (0-500km).
- Study thermospheric/ionospheric variability as a part of the internal atmospheric variability, subject to strong solar/magnetospheric forcing.
 - Sun-earth connection (irradiance and particulate).
 - Space environment (space weather and space climate).
 - Lower-upper atmosphere coupling.
- Project initiated in 2000 by Ray Roble, Byron Boville, and Rolando Garcia.

WACCM-X In Perspective

HAO/ACD/CGD WACCMX is WACCM with additional physics and further upward extended vertical range through thermosphere/ionosphere (~500km)

ACD/CGD Whole Atmosphere Community Climate Model (WACCM) is CAM with additional chemistry/physics and upward extended vertical range into lower thermosphere/ionosphere (~140km)

CGD Community Atmosphere Model (CAM) is atmospheric component of CESM


NCAR CGD Community Earth System Model (CESM)

WACCM-X Model Components

Model Framework	Chemistry	Physics	Physics	Resolution
Extension of the NCAR Community Atmosphere Model (CAM) Finite Volume Dynamical Core	MOZART+ lon Chemistry Fully-interactive with dynamics.	Long wave/short wave/EUV IR cooling (LTE/non- LTE) Major/minor species diffusion (+UBC)	Parameterized electric field at high mid, low latitudes. IGRF geomagnetic field. Auroral processes, ion drag and Joule heating	Horizontal: 1.9° x 2.5° (lat x lon configurable as needed) Vertical: 81 levels (125 levels) 0-~500km
Green: Thermospl	nere extension.	Molecular viscosity and thermal conductivity (+UBC) Species dependent Cp, R, m. Parameterized GW (including thermosphere)	Ion/electron energy equations Ambipolar diffusion Ion/electron transport due to Lorentz force Ionospheric dynamo Coupling with plasmasphere/ magnetosphere	 < 1.0km in Upper Troposphere/ Lower Stratosphere 1-2 km in strat. 0.5 scale height in mesosphere/ thermosphere (0.25 scale height in mesosphere/ thermosphere with 125 levels)

Capability of CESM1.04-WACCMX

- Study the whole atmosphere compositional, thermal, and wind structure.
- Study thermospheric variability due to changes in the lower atmosphere:
 - Long-term changes in space environment due to lower atmosphere climate change.
 - Seasonal and interannual variability of the thermosphere and ionosphere.
 - Day-to-day thermospheric/ionospheric variability due to interaction among planetary waves, tides and mean circulation.

Tutorial Session

- CESM: Sean Santos (NCAR/CGD)
- WACCM: Dan Marsh (NCAR/ACD)
- WACCM-X: Joe McInerney (NCAR/HAO)

Further information:

http://www.cesm.ucar.edu/

http://www.cesm.ucar.edu/working_groups/WACCM/

http://bb.cgd.ucar.edu/

WACCM: Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, 1950-2003, J. Geophys. Res., 112, D09301, doi: 10.1029/2006JD007485.

WACCM-X: Liu, H.-L., et al. (2010), Thermosphere extension of the whole atmosphere community climate model, J. Geophys. Res., 115, A12302, doi:10.1029/2010JA015586.