Impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification

Chih-Ting Hsu¹, Tomoko Matsuo¹, and Jann-Yenq Liu²

¹Ann and H. J. Smead Aerospace Engineering Sciences, University of Colorado Boulder, CO
²Graduate Institute of Space Science, National Central University, Taoyuan, Taiwan
Data Assimilation of RO sTEC

\[
sTEC = \int n_e dl = -\frac{f^2}{40.3 \times 10^6} \int (n - 1) dl = -\frac{f^2 S}{40.3}
\]

\[
sTEC = \frac{(S_1 - S_2) f_1^2 f_2^2}{40.3 (f_1^2 - f_2^2)}
\]

sTEC data:
Irregularly distributed and sparsely sampled in space and time. Large day-to-day variability.

GIP/TIE-GCM model:
Global and complete in space and time. Small day-to-day variability.

(Lin 2018, personal communication, 23 March)
Deterministic update by Ensemble Square Root Filter (EnSRF, Whitaker & Hamill, 2002) explained using Bayes’ rule

\[
\bar{X}^a = \bar{X}^b + K(y^o - H(\bar{X}^b))
\]

\[
X^a_n - \bar{X}^a = (X^b_n - \bar{X}^b) + \tilde{K}(-H(X^b_n - \bar{X}^b))
\]

\[
K = [\rho^b \circ (P^b H^T)]\left[\rho^b \circ (H^b P^b H^T + R)\right]^{-1}
\]

\[
\tilde{K}_k = (1 \pm (R/(H^b P^b H^T + R)))^{-1}K
\]

\[
P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} (X^b_n - \bar{X}^b) [H(X^b_n - \bar{X}^b)]^T
\]

\[
H P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} [H(X^b_n - \bar{X}^b)] [H(X^b_n - \bar{X}^b)]^T
\]
Deterministic update by **Ensemble Square Root Filter** (EnSRF, Whitaker & Hamill, 2002) explained using Bayes’ rule

\[
\tilde{X}^a = \tilde{X}^b + K(y^o - H(\tilde{X}^b))
\]

\[
X_n^a - \tilde{X}^a = (X_n^b - \tilde{X}^b) + 1/K(H(X_n^b - \tilde{X}^b))
\]

\[
K = [\rho^b \circ (P^b H^T)] [\rho^b \circ (H P^b H^T + R)]^{-1}
\]

\[
\tilde{K}_k = (1 \pm (R/(H P^b H^T + R)))^{-1} K
\]

\[
P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} (X_n^b - \tilde{X}^b)[H(X_n^b - \tilde{X}^b)]^T
\]

\[
H P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} [H(X_n^b - \tilde{X}^b)][H(X_n^b - \tilde{X}^b)]^T
\]

Remark 1: Observed and estimated variables are different.
Deterministic update by **Ensemble Square Root Filter** (EnSRF, Whitaker & Hamill, 2002) explained using Bayes’ rule

\[
\bar{X}^a = \bar{X}^b + K(y^o - H(\bar{X}^b))
\]

\[
X_n^a - \bar{X}^a = (X_n^b - \bar{X}^b) + \tilde{K}(-H(X_n^b - \bar{X}^b))
\]

\[
K = [\rho^b \circ (P^b H^T)] [\rho^b \circ (H P^b H^T + R)]^{-1}
\]

\[
\tilde{K}_k = (1 \pm (R/(H P^b H^T + R)))^{-1} K
\]

\[
P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} (X_n^b - \bar{X}^b)[H(X_n^b - \bar{X}^b)]^T
\]

\[
H P^b H^T \sim \frac{1}{N-1} \sum_{n=1}^{N} [H(X_n^b - \bar{X}^b)][H(X_n^b - \bar{X}^b)]^T
\]

Remark 2: Key to successful implementation of EnSRF is **covariance inflation/localization** to correct for issues resulting from sampling errors.
25 experiments with ensemble size 70 (1750 model runs) and different covariance localization length scale for each observing system.

Remark 3: Localization length scales are different for each observing system.
Observing System (Simulation) Experiment

OSE

Real Observation Model Result

OSSE

Synthetic observation Model Result

Nature Run (NR)

Independent observation
Observing System (Simulation) Experiment

A. Assess the impact of the F-3/C with OSE.

B. Compare the impact of the F-7/C-2 & F-3/C with OSSEs.

- Understand the impact of the F-7/C-2 on ionospheric specification.

OSE

<table>
<thead>
<tr>
<th>Real Observation</th>
<th>Model</th>
<th>Result</th>
</tr>
</thead>
</table>

OSSE

<table>
<thead>
<tr>
<th>Synthetic observation</th>
<th>Model</th>
<th>Result</th>
</tr>
</thead>
</table>

University of Colorado Boulder

CCAR
A. OSE of the FORMOSAT-3/COSMIC

- Validation data: CODE GIM
- Assimilation cycle: 1 hour
- Assimilation period: 24 hours
A. OSE of the FORMOSAT-3/COSMIC

- Validation data: CODE GIM
- Assimilation cycle: 1 hour
- Assimilation period: 24 hours

Remark 4: Assimilation of F-3/C GNSS RO helps introduce day-to-day variability.
<table>
<thead>
<tr>
<th>Observing System</th>
<th>OSSE-F3C-09</th>
<th>OSSE-F3C-13</th>
<th>OSSE-F7C2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F3/C</td>
<td>F3/C</td>
<td>F7/C2</td>
</tr>
<tr>
<td></td>
<td>January 1 2009</td>
<td>January 1 2013</td>
<td></td>
</tr>
<tr>
<td>Average Number of</td>
<td>96</td>
<td>69</td>
<td>368</td>
</tr>
<tr>
<td>sounding per hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Localization</td>
<td>10,000 km</td>
<td>10,000 km</td>
<td>5,000 km</td>
</tr>
<tr>
<td>Low & midlatitude RMSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-latitude RMSE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. OSSEs for FORMOSAT-3/COSMIC & FORMOSAT-7/COSMIC-2

$e_{\text{posterior}} - e_{\text{NR}}$

OSSE-F3C-09

OSSE-F3C-13

OSSE-F7C2

250 km

300 km

350 km

96 profiles per hour

69 profiles per hour

/ m³ × 10⁻¹²
B. OSSEs for FORMOSAT-3/COSMIC & FORMOSAT-7/COSMIC-2

<table>
<thead>
<tr>
<th></th>
<th>OSSE-F3C-09</th>
<th>OSSE-F3C-13</th>
<th>OSSE-F7C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observing system</td>
<td>F3/C</td>
<td>F3/C</td>
<td>F7/C2</td>
</tr>
<tr>
<td></td>
<td>January 1 2009</td>
<td>January 1 2013</td>
<td></td>
</tr>
<tr>
<td>Average number of sounding per hour</td>
<td>96</td>
<td>69</td>
<td>368</td>
</tr>
<tr>
<td>Horizontal localization</td>
<td>10,000 km</td>
<td>10,000 km</td>
<td>5,000 km</td>
</tr>
<tr>
<td>Low & midlatitude RMSE ratio (after 24-hour assimilation)</td>
<td>0.39</td>
<td>0.51</td>
<td>0.33</td>
</tr>
<tr>
<td>High-latitude RMSE ratio</td>
<td>0.52</td>
<td>0.63</td>
<td>0.74</td>
</tr>
</tbody>
</table>
B. OSSEs for FORMOSAT-3/COSMIC & FORMOSAT-7/COSMIC-2

<table>
<thead>
<tr>
<th>Observing system</th>
<th>OSSE-F3C-09</th>
<th>OSSE-F3C-13</th>
<th>OSSE-F7C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of sounding per hour</td>
<td>96</td>
<td>69</td>
<td>368</td>
</tr>
<tr>
<td>Horizontal localization</td>
<td>10,000 km</td>
<td>10,000 km</td>
<td>5,000 km</td>
</tr>
<tr>
<td>Low & midlatitude RMSE ratio (after 24-hour assimilation)</td>
<td>0.39</td>
<td>0.51</td>
<td>0.33</td>
</tr>
<tr>
<td>High-latitude RMSE ratio</td>
<td>0.52</td>
<td>0.63</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Remark 5: In comparison to the F-3/C, the F-7/C-2 has higher impact on ionospheric specification in mid- and low-latitude region.

Remark 6: Comparative OSSEs of the F-3/C (09 vs 13) shows importance of sufficient amount of RO coverage.
More Information on FORMOSAT-7/COSMIC-2

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Altitude 520~ 550 km, 24 degree inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>About 97 minutes</td>
</tr>
<tr>
<td>Constellation</td>
<td>6 SC to low-inclination-angle orbit</td>
</tr>
<tr>
<td>GNSS RO Payload</td>
<td>TGRS</td>
</tr>
<tr>
<td>Scientific Payload</td>
<td>IVM and RF Beacon Instrument</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Falcon Heavy</td>
</tr>
<tr>
<td>Launch Schedule</td>
<td>June 24, 2019</td>
</tr>
<tr>
<td>Mission Life</td>
<td>5 years</td>
</tr>
</tbody>
</table>
More Information on FORMOSAT-7/COSMIC-2

2019/1/28-30 2019/04 LD-40~36 days Launch Date (LD)
Pre-Ship Review & Operations Shipping Satellites from NSPO to Launch Site Mission Readiness Review & ESC#12

Liu 2019, personal communication, 25 May

FORMOSAT-7 Constellation Altitude Deployment Profile

Satellites will be separated to 6 orbital planes with 60-deg separation to a mission orbit of 520 km altitude **19 months after launch.**

University of Colorado Boulder
Conclusions

- Optimization of EnSRF parameters (e.g. covariance localization) is important for each observing system. (Hsu et al., JGR, 2017)

- OSE shows that data assimilation of F-3/C RO sTEC can introduce observed variability into the model. (Hsu et al., ESS, 2018)

- OSSEs show that F-7/C-2 can improve the mid- and low-latitude ionospheric specification considerably by 33%. (Hsu et al., ESS, 2018)

- F-7/C-2 are going to be launched on 24th June!

Relevant Poster: DATA03, Poster Section, Tuesday
