Thermospheric weather in FPI data and first-principles models

Brian J. Harding^{1,2}, Jonathan J. Makela¹, Aaron J. Ridley³

¹University of Illinois at Urbana-Champaign ²Now at Space Sciences Laboratory, University of California Berkeley ³University of Michigan

18 Jun 2019, CEDAR Workshop

IILLINOIS

- What are the characteristics of thermospheric wind variability?
- How well are our models doing?

"Climate is what you expect; weather is what you get"

• Significant progress has been made modeling the climate (e.g., MSIS, IRI, HWM, CTMT)

- Predictions of day-to-day variability remain out of reach
- The first step is statistically characterizing this variability
 - Spatially
 - Temporally

ECE ILLINOIS

Thermospheric Weather

- Plasma variability is largely driven by neutral variability
- Focus on **upper thermosphere (~250 km)** variability
 - Density variability \rightarrow satellite drag
 - Composition variability \rightarrow plasma production/loss
 - Wind variability → electrodynamics and momentum forcing
- Move beyond case studies towards a systematic approach

Fabry-Perot interferometer (FPI) network

FPI data

ECE ILLINOIS

- Analyze one year of data for **Kp ≤ 3**
- Removal of 60-day "climate" creates a wide-sense stationary random process suitable for statistical interpretation
 - And for connecting with Kalman-filter-type assimilative models

Feb - Mar 2013, PARI, NC, USA

Global Ionosphere Thermosphere Model (GITM)

Year	2013
Lower Boundary	~97.5 km, MSIS/HWM14
High Latitude Forcing	Weimer [2005]; Fuller-Rowell and Evans [1987]

courtesy Astrid Maute

ECE ILLINOIS

- Data contain more spatial structure than the model
- Temporal decorrelation matches well
- Spatial decorrelation is too small to be explained by tidal variability

(correlation < 0.36)

Conclusion

ECE ILLINOIS

I L L I N O I S

See *Harding et al.* [2019] for more https://doi.org/10.1029/2018JA026032

