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Leveraging the Benefits:
LEO is the only truly sustainable
environment for mega constellations
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Avoiding the Risks:
The interaction with the atmosphere
makes it difficult to predict conjunctions

IRIDIUM/Cosmos Collision + 3 hr
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Toward Better Nowcasting and
Forecasting of the LEO Environment

-—I Accelerometer Data
o —~10" TIE-GCM GPI
D o™
VIme15I e 2,2018 www.wileyonlinelibrary.com/journal/swq QUARTERI—Y 8%
THE |NTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS % \x;
Using Space Weather Data and Models to Help 4G 1 ,. r“ ,}W FW\J hd
Avoid Collisions in Space 548 ‘ W W MAR ¥ 'Qll,« A
CHAMP
10 200 250 300 350
Day of Year (2003)

i EwE With Data Assimilation

= Accelerometer Data
|| === |RIDEA Posterior

Validate new approach, IRIDEA, with
real-world scenario

=  Simulate the I-T without data
assimilation
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IRIDEA: lterative Re-Initialization, Driver Estimation, and Assimilation
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Variability of the I-T System

Quiet Time

Neutral DSensities (GRACE satellite, 410 km, 5:30 LT)
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Plasma Dgnsities (Swarm satellite, 450 km, 7:45 LT)
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Variability of the I-T System

Neutral D8ensities (GRACE satellite, 410 km, 5:30 LT)
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Plasma Dgnsities (Swarm satellite, 450 km, 7:45 LT)
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= +50-100% observed even
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Data Assimilation

Different Approaches for Different Systems

Q: Why do we need a Different data assimilation scheme?

A: Because the lonosphere-Thermosphere (I-T) system is:
= Highly driven
= Sparsely observed

Chaotic System Strongly Driven System
(e.g. tropospheric weather) (e.g. lonosphere-Thermosphere)
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[Image adopted from Codrescu et al., 2018]
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The Sun-Earth System

r — — —Magnetosphere = = —
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! I Electric Fields
: & Joule & Particle Heating

Heating/

Photochemistry & Upper Atmosphere
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Adapted from Prélss, 2011 Upward Propagating
Waves and Tides
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Drivers of the |I-T System

The Sun-Earth System

Electric Fields
& Joule & Particle Heating

Heating/

Photochemistry . Upper Atmosphere

Adapted from Prolss, 2011
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PataDriver Assimilation
New Approach

» Calculate what the driver should be for I-T

. Technique
model output to match observations Ove rviqew
* Apply new estimated driver retrospectively to
allow model to equilibrate
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Estimated driver
applied retrospectively

More details here:

I-T Model after data assimilation
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http://dx.doi.org/10.1002/2017SW001785

Free Run vs. IRIDEA

Day 80-365, 2003
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Free Run vs. IRIDEA

Day 80-365, 2003

With IRIDEA Data Assimilation
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IRIDEA: lterative Re-Initialization, Driver Estimation, and Assimilation
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Free Run vs. IRIDEA

Day 80-365, 2003

With IRIDEA Data Assimilation
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Persistent Model Features
Day 80-365, 2003

Method allows us to:

= |[solate internal model features from

external drivers

» ...while still comparing to observations

Investigate model’s internal biases:
= Viscous and ion drag forces (e.g., Hsu

et al., 2016)

» Tidal and GW influences (e.g., Jones

etal., 2014)

= Cooling discrepancies

» |mposed lower boundary vs
Whole Atmosphere model
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Observational Response

Sensitivity to Heating Sources

Response to Increasing Solar Irradiance Response to Increasing Geomagnetic Activity
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Observational Response

Sensitivity to Heating Sources

Response to Increasing Solar Irradiance Response to Increasing Geomagnetic Activity
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This work was made possible
with support from AFOSR
and the University of

Colorado Grand Challenge Sum mary.

eather Center

> LEO can be a sustainable

C > Slmulatlon reS|duaIs are powerful tools for
diagnosing internal model physics, in
(approximate) isolation of external drivers

» Observations of composition complement
mass densities

Thank you!




External Drivers

Observed vs. Estimated

The estimated F,,; time series

Solar Flux

resembles the actual ' :
—— Observed

=  Solar rotational modulation is evident 200[| — IRIDEA-Estimated y

» But, the spikes are probably not
representative of EUV variations

150

F10.7 (sfu)

The estimated Kp time series

somewhat resembles the actual

= Better correlation when a daily running-
maximum filter is applied

= Does TIE-GCM have a problem cooling Geomagnetlc Kp Index
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Model Performance Metrics
Day 80-365, 2003

TIE-GCM GPI [RIDEA JB-08  MSIS  HASDM
Prior Posterior
CHAMP _
1(m /o) 1.02 1.01 1.01 0.99 1.09 1.01
o(m/o) 22.2% 6.1% 13.1%  17.4% - Ingested Data
RMSe 22.3% 6.2% 13.1%  20.2% i
GRACE-A -
(m/o) 1.03 1.00 1.01 0.99 1.13 0.98 | Independent
o(m/o) 27.0% 10.3% 6% 17.2% 22.4% 3.80 Validation Data
RMSe 27.3% 10.4% 7.6% 17.2%  26.6% 72% ) A
SN——" N
— Lo pmi )
RMSe = , | — (ln ””) Y
: 2 Poii RMSe can be partitioned between
_ L, model bias/offset (u) and
Metrics 4  u(m/o) :"‘P(__‘nz_ll“ pa}) variance (0):
‘ y 2 _ 2 . 2
. N _ 2 \ e — Tr) = 11
o(mfo) = Jiz (m pmi mm___,.“)) RMSe” = In(u(m/o))+a(m/o)
4 ‘()0‘..,'
L n=1
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