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DEEPWAVE "Region of Airborne Operations" (RAQO)
is the 2"d largest GW hotspot in the S. Hemisphere

major GW sources include:

- topography (NZ, Tasmania, islands)
- circumpolar jet (Southern Ocean)
- frontal systems and convection

(a) RMS AIRS Brightness Temperature: June-July 2003-2011 2.5 hPa

& Melbourme
Kingsgﬂn
Auckland Island

[ C .
0.470 0.595 0.720 0.?(45 0.970 1.09 1.22

- 10 m/s

Davs with U

Frequency of 700 hPa
winds >10 m s
at Invercargill, New Zealand

(July 1991-2011)

25

mean ~15 events

L

10

1992 1994 996 1998 2000 2002 2004 2006 2008 2010
Year



Austral Winter provides a stronger zonal jet and strong
propagation channel enabling MWSs to penetrate
to very high altitudes

- an ideal natural laboratory

DEEPWAVE research focus
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DEEPWAVE Approach:

Perform measurements in a region that contains the major GW sources
Expand GV measurement capabilities to address altitudes from ~0-100 km
Bring additional U.S. and int'l. resources to enhance the research benefits

Include extensive forecasting and modeling activities for better flight targeting,
improved understanding, and GW parameterization guidance

NSF/NCAR Gulfstream V (GV)
with new lidars and an AMTM

DLR Falcon with Doppler lidar




DEEPWAVE measurement capabilities
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GV sodium and UV lidars Research Flight 22 (13 July 2014)
—weak MW forcing, but very large MWSs, 2ndary

Na lidar: ~0.2 W beam. 9.8 W waves extending to >100 km (Bossert et al. poster)
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USU GW Imaging
Mapping MLT GWs in OH (~87 km) intensity and temperature

GV: AMTM and 2 side viewing
GW imagers for large spatial
coverage (~900 km cross track)

Lauder: second AMTM with 33
clear nights of GW & MW data
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DEEPWAVE also employed extensive GB instrumentation

primary
instrumentation
on NZ South Island

also new Rayleigh
lidar and meteor
radar on Tasmania
specifically to
support
DEEPWAVE

@ 249 MHz BL radar (NCAR)
{ radiosondes (NCAR, DLR)
‘ MLT airglow imagers (BU)
£ MLTFPI(UW)

MLT AMTM (USU)
Na Rayleigh lidar (DLR)

Rayleigh lidar, meteor radar,
and radiosondes at Kingston,
Tasmania (AAD, ATRAD)




DEEPWAVE has extensive forecasting/modeling support
by global NWP and regional models

DEEPWAVE Forecasting and Research Models

model type, application resolution | altitudes
ECMWEF IFS global, forecasting 16 km 0-60 km
NCEP GFS global, forecasting/research 16 km 0-60 km
NIWA/UKMO global, forecasting/research | 2 & 6 km | 0-40 km
NAVGEM global, forecasting/research | 36 km 0-100 km
NAVGEM (high altitude) | global, assimilation/research | 130 km 0-120 km
COAMPS Adjoint regional, forecasting/research | 35 km 0-30 km
COAMPS regional, forecasting/research | 5 & 15 km | 0-80 km
WREF (various) regional, forecasting/research | 2 & 6 km | 0-40 km
Fourier-ray linear local, forecasting/research any 0-100 km
Finite-volume DNS local, research 30m-1km | 0-400 km
Spectral DNS local, research 3-10 m 0z~10 km

Research efforts will include:

- forecasts and re-analyses of measurement environments
- aiding interpretation of observations
- assessments of model performance

- improvements of GW drag descriptions




Comparisons of Observations and Modeling
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South Island average GWD - 6-km WRF model
Kruse and Smith (2015)

6-km WRF forecast of OGWD with ECMWF boundary conditions
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RF16 (04 July)

— strong MW forcing, restricted penetration

6-km WREF forecast suggested Rayleigh lidar T' (x,z), +15 K, RF seg. 3
MW dissipation in weak 55 orm S "EIEAT ——
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RF25 - UV lidar T'(y,z) and ECMWF global model comparison

- EC model does well describing GW scales & location from a SO jet stream
- but under-estimates amplitude by ~2 times or more
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Mountain Wave Dynamics in the MLT

- RF22 (13 July) MWs had A, ~80-240 km, A, decreasing strongly in altitude
- strong dissipation approaching critical level, 2ndary GW generation

Sodlum Mlxmg Pass 1

large-amplitude MWs have peak-peak 6z ~8 km,
exhibit breaking at ~75-85 km
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Auckland Island MWs on RF23 (14 July)

- clear "ship-wave" response at ~85 km

AMTM and wing camera OH A,~40km, T' ~10 K
airglow brightness at ~87 km
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Ground-based imaging at Lauder and Mt. John — 21 June
Forecast conditions judged "too weak" Lauder AMTM
for significant MW responses 180 km

- but those seen at 87 km were the
largest seen anywhere to date

Mt. John all-sky imager
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144 km

21 June Lauder AMTM — MWs at ~87 km, A, ~12-80 km
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Summary

- DEEPWAVE observations & modeling are quantifying GW scales, propagation,
and dynamics from their sources to ~100 km

- MWs achieved the largest responses in the stratosphere and MLT:
- weak forcing enables "linear" propagation, large amplitudes in the MLT
- linear MWs having A, ~12-250 km readily penetrate into the MLT
- large MW amplitudes at smaller scales yield larger momentum fluxes
- MW breaking (stratosphere or MLT) yields strong 2ndary GW generation
- large-scale MWs with small c, easily refract into the polar vortex

- GWs from jet streams & fronts have larger A, and penetrate to high altitudes
- larger-scale GWs often modulate the propagation of smaller-scale GWs

- high-resolution global and regional models often do a good job of predicting the
gross features of the observed responses

- our field team of researchers and support staff did a spectacular job!



