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DEEPWAVE "Region of Airborne Operations" (RAO)  

is the 2nd largest GW hotspot in the S. Hemisphere   
 

 

  

major GW sources include: 

 

   - topography (NZ, Tasmania, islands) 

   - circumpolar jet (Southern Ocean) 

   - frontal systems and convection 
 

Frequency of 700 hPa  

winds >10 m s-1 

at Invercargill, New Zealand 

 

(July 1991-2011) 

mean ~15 events 



Polar Vortex 
Stratosphere 

Warm polar stratopause 

DEEPWAVE research focus 

Wind Speed (m/s) 

Troposphere 

GW-Driven Residual 

Circulation 

Austral Winter provides a stronger zonal jet and strong  
propagation channel enabling MWs to penetrate  

to very high altitudes 

- an ideal natural laboratory 

Christchurch 



DEEPWAVE Approach: 

• Perform measurements in a region that contains the major GW sources    

• Expand GV measurement capabilities to address altitudes from ~0-100 km 

• Bring additional U.S. and int'l. resources to enhance the research benefits  

• Include extensive forecasting and modeling activities for better flight targeting, 

improved understanding, and GW parameterization guidance 

NSF/NCAR Gulfstream V (GV) 

with new lidars and an AMTM  
DLR Falcon with Doppler lidar  



DEEPWAVE measurement capabilities 



GV sodium and UV lidars 
 

 

Na lidar: ~0.2 W beam, 9.8 W 

 

   – rNa(z) and T(z) ~75-105 km 

 

UV lidar: ~5 W pulsed          

   

  – densities  & temperatures 

 ~20-60 km 

Research Flight 22 (13 July 2014)  

– weak MW forcing, but very large MWs, 2ndary 

waves extending to >100 km (Bossert et al. poster)  



USU  GW Imaging 

AMTM instrument suite 

Mapping MLT GWs in OH (~87 km) intensity and temperature  

AMTM 

21 June @ Lauder 

 

RF22 – 13 July 2014 with weak orographic forcing  

Wing 

cam 
180 km 

GV: AMTM and 2 side viewing 

GW imagers for large spatial 

coverage (~900 km cross track) 

 

Lauder: second AMTM with 33 

clear nights of GW & MW data 

Lauder 
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DEEPWAVE also employed extensive GB instrumentation 

primary 

instrumentation 

on NZ South Island 

 

 

 also new Rayleigh 

lidar and meteor 

radar on Tasmania 

specifically to 

support 

DEEPWAVE 



DEEPWAVE has extensive forecasting/modeling support  
by global NWP and regional models 

Research efforts will include: 

- forecasts and re-analyses of measurement environments 

- aiding interpretation of observations 

- assessments of model performance 

- improvements of GW drag descriptions 



Comparisons of Observations and Modeling 

Lidar w' 

2-km WRF 

model 

DLR Falcon Doppler Lidar 

measurements of w' 

Observations indicate that 

higher WRF resolution is 

required for trapped MWs 



South Island average GWD – 6-km WRF model 
Kruse and Smith (2015)  

RF09,12,   16       RF22 

"deep" events 

(Stratospheric MW  

breaking events) 

(very weak  

MW forcing  

– VERY strong 

responses  

in the MLT) 

6-km WRF forecast of OGWD with ECMWF boundary conditions 



RF16 (04 July)  

– strong MW forcing, restricted penetration 
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Rayleigh lidar T' (x,z), ±15 K, RF seg. 3 

WRF  w(x,z) forecast  

6-km WRF forecast suggested 

MW dissipation in weak 

stratospheric flow, 

radiation of secondary GWs 

to higher altitudes  

lidar reveals:  

1. weak GWs at ~20-30 km 

2. increasing amps. >30 km 

3. both westward and eastward  

prop. localized over terrain 



RF25 – UV lidar T'(y,z) and ECMWF global model comparison 
 

- EC model does well describing GW scales & location from a SO jet stream 

- but under-estimates amplitude by ~2 times or more 



Mountain Wave Dynamics in the MLT 
 

- RF22 (13 July) MWs had lh ~80-240 km, lz decreasing strongly in altitude 

- strong dissipation approaching critical level, 2ndary GW generation  

large-amplitude MWs have peak-peak dz ~8 km,   

exhibit breaking at ~75-85 km 

MW breaking strongly reduces MW amplitude 

below ~87 km,  

causes 2ndary GW generation at multiple scales 

that penetrate to higher altitude 



Auckland Island MWs on RF23 (14 July) 
 

- clear "ship-wave" response at ~85 km 

lz ~ 40 km, T' ~10 K 

Fourier-ray model captures 

form, scales, and T'  

AMTM and wing camera OH 

airglow brightness at ~87 km 



Ground-based imaging at Lauder and Mt. John – 21 June  
 

Forecast conditions judged "too weak" 

for significant MW responses 
 

- but those seen at 87 km were the 

largest seen anywhere to date 
 

Mt. John all-sky imager 

Lauder AMTM 



21 June Lauder AMTM – MWs at ~87 km, lh ~12-80 km  
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Summary 

- DEEPWAVE observations & modeling are quantifying GW scales,  propagation, 

 and dynamics from their sources to ~100 km 

 

- MWs achieved the largest responses in the stratosphere and MLT: 

 - weak forcing enables "linear" propagation, large amplitudes in the MLT 

 - linear MWs having lh ~12-250 km readily penetrate into the MLT 

 - large MW amplitudes at smaller scales yield larger momentum fluxes 

 - MW breaking (stratosphere or MLT) yields strong 2ndary GW generation 

 - large-scale MWs with small cgz easily refract into the polar vortex 

 

- GWs from jet streams & fronts have larger lh and penetrate to high altitudes  

 

- larger-scale GWs often modulate the propagation of smaller-scale GWs  

 

- high-resolution global and regional models often do a good job of predicting the 

 gross features of the observed responses 

 

- our field team of researchers and support staff did a spectacular job!   

 

 


