

FROM DISCOVERY TO SYSTEM SCIENCE

Rod Heelis University of Texas at Dallas

Transitions

A Change in Approach

Equatorial Ionospheric Irregularities

Woodman &LaHoz JGR, 1976.

The early seventies marked the beginning of digital processing that allowed RTI displays of spread-F to describe the shape of large-scale(100 km) envelopes (bubbles) containing small-scale (3m) irregularities.

The Explorer Program

Explorer-51 – Atmosphere Explorer-C, 1973

- Many critical advances have been enabled by a regularly scheduled launch of space experiments supported by the Explorer Program.
- This program remains an important entry path for new scientists.

CEDAR - 2014

Bill Hanson and his infamous analog filing system

The Explorer Program

Atmosphere Explorer-C, 1973

- Ion Drift Meter
- •
- New device added with little review.
- Large returns

Equatorial Ionospheric Irregularities

Early data from Atmosphere Explorer-C shows plasma within the bubble envelope moving upward at velocities greater than 150 m/s

DISCOVERY TO SYSTEM SCIENCE Equatorial Ionospheric Irregularities

630.0 nm, Feb 04, 2003 0933 UT

Makela et al JGR 2006

Optical imagery from ground and space shows large-scale distribution of plasma depletions and small-scale bifurcations of single depletions.

Time-lapses allow envelope motions to be determined.

- Where do we see them?
- What do they look like at other places?
- Can we model them?

CEDAR - 2014

DISCOVERY TO SYSTEM SCIENCE Equatorial Ionospheric Irregularities

Aarons IEE 1977

Examination of global occurrence of irregularities and associated radio scintillation reveals seasonal and longitudinal variations.

Equatorial Ionospheric Irregularities

What, Where, When

- Seasonal/Longitude variations in irregularity appearance are consistent with alignment between the magnetic meridian and the terminator.
- Assumption that E-region acts as a passive conductive element?

Equatorial Ionospheric Irregularities

- The same alignment of the magnetic meridian and the terminator maximizes the effects of the pre-reversal enhancement.
- Irregularities penetrate the F-peak only when the F-region is lifted to altitudes sufficiently high that the R-T instability growth rate becomes large.
- BUT what initiates the instability?
- Search for sources of energy

Equatorial Ionospheric Irregularities

A shear in the zonal ion drift (vertical electric field) may provide the free energy for large scale perturbations in the bottomside F-region.

What properties of the neutral wind are required to produce such a shear?

DISCOVERY TO SYSTEM SCIENCE Equatorial Ionospheric Irregularities

Seasonal/Longitude variations in irregularity appearance do not conform to terminator/sunset alignment.

Better coincidence with location of Inter-tropical Convergence Zone.

Propagating waves from the troposphere are an energy source for instabilities.

Are these waves present and absent in accord with the appearance and absence of irregularities?

CEDAR - 2014

Tsunoda JGR, 2010; McClure et al JGR 1998

Equatorial Ionospheric Irregularities

- > Why are plasma depletions sometimes present and sometimes absent?
 - Roles of gravity waves and velocity shear in producing instabilities.
 - Role of upward drift in changing the RT growth rate.
- How do wind systems give rise to currents and plasma motions that drive instabilities?
- How do winds and waves appear at the appropriate locations from local and remote sources?

A rich environment for inquisitive researchers

High Latitude Ionospheric Convection

Early visual inspection of satellite data provided first views of global convection at high latitudes in the ionosphere.

High Latitude Ionospheric Convection

+Z (10 nT)

OMNI IMF

Stat Mod: RG96 By-, 6<BT<12

1000

250 125

 $\frac{1000 \text{ m/s}}{\Phi_{\text{pc}} = 57 \text{ kV}}$ $\Lambda_{\text{HM}} = 52^{\circ}$

 $N_{vc} = 462 \text{ pts}$

3 Hour (MLT)

High Latitude Ionospheric Convection

Studies of ionospheric convection are now intimately linked to drivers at the dayside magnetopause at the flanks of the magnetosphere and in the tail

High Latitude Ionospheric Convection

Observations and computational tools used together to improve insights.

Stand Still will 'e (Pink Floyd, 1979)

Poleward moving auroral emissions associated with equatorward motion of OCB as open flux is added to polar cap

> How do we describe a dynamic system with observations at single location?

Milan et al. AnnGeophys, 2010

Added open flux results in expansion of OCB to lower latitudes

High Latitude Ionospheric Convection

High Latitude Ionospheric Convection

- How do changes in the convection pattern propagate through the system?
- How are changes in convection are related to changes in magnetic field topology?
- How does the present state of the ionosphere affect its response to chages in the solar wind?
- How are changes on the dayside and the nightside related?

A rich environment for inquisitive researchers

A Change in Approach

An Invitation

Make time to consider the entire picture.

Take pleasure in appreciating the science outside the box 25

CEDAR - 2014