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Overview

Several next-generation astronomical radio interferometers are
either operating or under construction

» Two northern hemisphere (EVLA/LWA, New Mexico, USA; LOFAR,
Northern Europe primarily Netherlands)

» Two proposed in the southern hemisphere (SKA, South Africa or
Australia; MWA Australia)

* Two equatorial (GMRT, India; ALMA, Chile)
lonospheric effects including refraction, diffraction, scintillation,
and Faraday rotation can affect astrophysical measurement quality

» Better ionospheric correction methods are needed to improve
astrophysical imaging

« However, the astrophysical observations can be exploited to better
understand mesoscale ionospheric effects

Modern radio interferometers present new opportunities for
lonospheric science
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lonospheric Effects on LF Astronomical Imaging

» lonospheric effects are very important
« Correction is required to meet imaging goals

* lonospheric specification/measurement is a byproduct of ionospheric
correction/calibration
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How Do Interferometers Work?

Interferometers measure the quasi- _
monochromatic fringe visibility V V r,r =[B(8)exp —27i$-(r —r)/4 dQ
V is the interferogram of sources ,
visible within the beam of the B()=V r,r exp 27i$-(r,—r)/A dQ
interferometer

The Visibilities and the Brightness
(B) are a Fourier transform pair
The Brightness is seen to be only a
function of the baseline distance

between the antennas ge|ometric p
. elay 27
The slow rotation of the Earth ,y/
causes the dot product to vary with
time effectively scaling the baseline )
distance g,
This improves the coverage in the i)
spatial frequency domain and (r - )
Improves the retrieved image quality 2
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Measurement Imperfections (1 of 2)

Geometric
Delaj,r

{11{1‘]{1 (t)

» Butthe interferometers are imperfect and instrumental and other
artifacts creep into the measurements

« (Geometric and antenna delays
» Point spread function of antennas

« Assumption that celestial sphere does not affect transmission of radio
waves — ionospheric distortions violate this assumption
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Measurement Imperfections (2 of 2)

» These imperfections affectthe measurement equation
V" r,r, =[B(8)g,9,exp —27i$-(r,-1)/4 dQ
» The antenna gain terms (g,) are given by:

g, =Pk s exp(i(4,, +4,, +4..+9.))

P, is the antenna point spread function

damp = 27 ambiguities

Pono = I0N0Ospherically induced phase delay

Pceom = geometrically induced phase term (Earth’s rotation)
*  dan = Phase delay induced by antenna electronics

» The ionospheric terms are what we are interested in

» The Visibilities are affected by the phase differences:
 Ap=(-8.48/ vgu,) ATtecy~ 0.0015 TECU deg (at 74 MHz)
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lonospheric Distortion Scenarios

In scenario 3, the correction is done in image space after
the Visibilities are Fourier transformed. A phase screen Is
fit to minimize image distortions and applied to the
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In scenario 4, it is likely that a hybrid approach will be
adopted.

(@) (b)

In scenarios 1 & 2, the ionospheric term can be estimated
In the spatial frequency space and removed before Fourier
transforming. This is known as Self Calibration.
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Where Do We Go From Here?

Self Calibration: works for narrow fields of view and bright sources

Field Calibration: works well for wider fields of view and for cases
when the ionospheric coverage exceeds the array size

Hybrid Calibration: a combination of self calibration and field
calibration

» Peeling: Self calibrate on bright sources and then apply field
calibration to remove the remaining distortion

Can we use ionospheric knowledge to produce a better approach?

» Data assimilation: Assimilate heterogeneous ionospheric
measurements to create global/regional ionospheric specification

« Phenomenological approach: identify ionospheric phenomena present
in data and tailor correction

What phenomena are observable?




CRICKET Concept
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COSMIC-GOX: Electron Density Profiles

» Electron density profiles from three
widely separated occultations indicated

low gradients in the background m%
lonosphere
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VLA Measurements

Baseline Reduced Phases North Arm (90 sec. ave.) Bascline Reduced Phases West Arm (90 sec. ave.)
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* Phase structures alongeach arm are very similar

* Phase progressionindicating roughly North-to-South
motion

» East arm baseline scaling not as clear

» Takentogether this indicates a large-scale wave ; ;
traveling approximately perpendicular to the East arm A
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CRICKET Derived TID Parameters

Period  Amplitude Azimuth Speed Projected
(min.) (TECU) A (km) (degrees) (m/s) A(km)
95.33 0.010 91.2 186 16 100.7

» Results are fairly typical for characteristics of MSTIDs seen over SW
US

» Speeds typically ~100-200 m/s

« Wavelengths typically 100-200 km

* Periods 10-100 min.

» Direction of propagation typically southwesterly — but not always

13.62 0.065 8.7 223 96 165.3

1
!
!
L1192 0.141 178.6 121 250 233.4
!
| 10.59 0.137 196.1 159 309 196.2
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TIP Measurements

TIP measures the uv rad |ance at TIP is a narrou; I;and far-uitraviolet photometer '

for ionospheric measurement
135.6 nm

« O*+e >0+ hv(135.6 nm)
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TIP Measurements

TIP Radiance & TEC Fourler Transform of TIP Data
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Where did it/they come from?

» Some MSTIDs are thought to originate from turbulence near jet streams
» The jet stream over the central US was changing dramatically on Sept 15,

2007

» This is a possible explanation for their origin
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Simultaneous Radio and Optical Observations

(Campaign 1)
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» Date: August 2003 (AC677)

» Objective

Identify nighttime ionospheric structures
affecting 74 MHz VLA

» Three 8-hr data epochs at 74 MHz
» Nighttime optical measurements
630.0 nm F-region (N & height)
777.4nm F-region (Ng?)
557.7 nm Mesosphere

Oxygen Hydroxyl (broadband)
Mesosphere



Mesospheric Waves

» Complex mesospheric waves observed by optical camera
» Mesosphere — neutral atmosphere, 50—85 km altitude
» Turbulence driven by atmospheric gravity waves

Turbulence suggests the possible existence of Sporadic-E
plasma clouds near 100 km altitude

557.7-nm emission
Aug 25, 2003 00:29 UT
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Sporadic-E Observations

Sporadic-E 2003-08-25

» Top panel: Off-site
lonosonde observations o . e
of sporadic-E
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LWA Overview

panel)

Each station consists of sets of phased array
antennas

*  Operates from 20-88 MHz

«  Computer controlled beam steering
UpperPanelatright LWA station 1
Lowerleftpanelshows antennasatLWA 1

E/Iilr_lststation: 256 antennas, 2.8° Beam width at 75
ya

52 Stations spread over New Mexico (bottom L. WA Stat|0n 1 La Out
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RASCAL Concept

Sourcel Source3

vy

Center

Rapid All-Sky CALibration (RASCAL) technique proposed to perform ionospheric
measurements & calibration

Uses the VLSS sky survey for source selection
RASCAL technique will scan all visible sources with ~10 second cadence

Current implementation: ~100 sources, 1 station, 50 msec dwell, ~6-7 sec scan




RASCAL Simulation

» VLSS sky catalog contains:
16612 sources
 Flux>1Jy

» Midnight local time on 3/21/2010

« 52 LWA stations (yellow stars)
 Minimum source elevation 30°

« 339 sources visible with fluxes > 10 Jy

— Given current operating constraints —
50 ms dwell and 20% switching
overhead — ~20 sec required to
sample sources

« For 17628 total lines-of-sight!
— High sampling density
 lonospheric height 300 km
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Summary & Conclusions

Modern array interferometers are extremely sensitive to the ionosphere

» Measure the TEC difference between array elements to extremely high
precision

* However, they are insensitive to the absolute TEC
High temporal resolution ~10 seconds

» Good for studying traveling structures: TIDs, Sporadic-E, lonospheric
Gradient Evolution...

High spatial resolution ~10 km
» Good for mesoscale ionospheric studies

New ionospheric correction techniqgues are required providing
opportunities for young researchers

Also, new measurement and calibration technigues promise new
lonospheric measurement types
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Interferometer Measurements (1 of 2)

» Maxwell's Equations tell us that:
E(r) = [[[P(R,r)E(R)dxdydz

» Assume that the celestial sphere is empty

» Actually we are interested in the fringe visibility, which is proportional to
the expectation value of square of the electric field

v <-U8(R)€ ()P va\R
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Interferometer Measurements (2 of 2)

» The source is assumed to emit incoherently, so the integral is zero
exceptwhen R; = R,and the order of the integrations can be
reversed:

2 mc:=J]<waY>

» Assuming that R>>r, expanding the exponentials retaining first
order terms, and substituting:
2> R

|, § =(€©)
> We get finally the Measurement Equation (S is a unit vector
pointing toward the source):

.exp 2ziv|R—r|/c exp —2ziv|R-r,
R-t R-r.

R C g

2

Vorr = (1 (8)exp —27ivs-(r—1)/c dO




Total Electron Content Sensitivity (1 of 2)

» Fora plane parallel ionosphere:
ATZ,l - Tz (r;’ §2) _T (r:’ §1)

- dz, /- dz,
= nx,y,2) %/, = In0¢,y,2) %/,

» Assuming a small spatial extent for the array and expanding in a
Taylor series:

. _ dz
AT =~ Oj[n(xl, Vo 2)u +pV, n(X,y.2)-(r—=r)-n(x,y,2)u |—

241

» Ina plane parallel atmosphere: 1, = 14

AT ~ :j[vwn(xl, y z)-(r, - rl)]%

» Theinterferometer is sensitive to the gradient of the TEC
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Total Electron Content Sensitivity (2 of 2)

» For ionospheric physics purposes, interferometer sensitivity to phase
changes and insensitivity to absolute phase implies that:
* Interferometers are insensitive to laminar ionospheres
« Determination of “large scale” phase screens is an under-determined problem
— Constant TEC terms are lost

» Also, ionospheric tomography using intereferometers is under-determined —
due to absolute phase insensitivity and due to insufficient vertical resolution

— Similarto Computerized lonospheric Tomography whichmeasures TEC relative to
some position (usually the pointof closestapproach)

— Butinstead of a few bias terms ~ number of stations —tomography would require
thousands of bias terms ~ number of sources the number of stations!

» But interferometers are very sensitive to TEC changes to ~0.001

TECU/deg phase (at ~80 MHz)
» Great for measuring and monitoring gradients and their time variation

» Great for detecting traveling structures
 Maybe use frequency dependence to provide additional information?
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