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Data Assimilation in General

Problem set

A physical system (ocean, atmosphere, radiation belt, sun ...)

* Observation of a physical system
* Model of the physical system (an approximate to the time evolution)
We want to increase our knowledge by combining both data and model

model output can be data too!
improved estimate of the (unknown) true state, e.g. radiation belt fluxes
estimate model error and validation

Data assimilation is describing techniques that effectively combine model data in a
statistically correct way using their uncertainties



Data Assimilation Basics

Data assimilation is combining data with model using statistical
and data analysis tools.

DA includes many different techniques

direct insertion, least square methods, 3D-Var, Kalman Filters
and variations.

Main motivation for us: We want to use all information (from
models and data) to increase our physical understanding.

Assimilated
States,
Forecasts,
Estimated
Parameters,
Uncertainties




Karl Friedrich Gauss

In “Theoria Motus Corporum Coelestium”
(1809)

Gauss determined orbits of comets from
Incomplete astronomical data
Newtonian mechanics

Gauss invented the “Least Square Method”
Early attempts of weather forecast are based on his method
Key ideas:

All models and observations are approximate

Resulting analysis will be approximate as well

Observations must be optimally combined

Model is used to preliminary estimate

Final estimate should fit observation within observation error



Principle of data assimilation

How can we combine data and model in a most effective way?
Maximum likelihood estimate

Bayesian statistics - _
)|zt () (K121 22) ﬂ
Least Square method

z1 and z2 can be information
based on observations and/or
models.

Note: Final o is less than either
ozl or 0z2 .The uncertainty
has been decreased by e
combining the two pieces of e
information. 1
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FIG. 1. 6 Conditional density of position based on data z, and z,.

Even poor quality data will provide some information but it will receive
only a small weight in the DA algorithm.



Data Assimilation Methods: Algorithms

A non-linear methods
Kﬂh#mn smoother

(4D-Var or) 4D-PSAS with model error

g g v fixed-lag Kalman smoother
EKF
intermittent 4D-Var or 4D-PSAS » long 4D-Var or 4D-PSAS
; A A
Historic Overview

E- 3D-Var or 3D-PSAS * Successive correction
E * Ol (1768)

Optimal Interpolation (OI) * 3D-Var (90's)

* 4D-Var (late 90's by Meteo
France and ECMWF)

Cressman Successive Corrections

nudging Assimilation techniques differ
in numerical cost, their optimality
Interpolation of observations and_ th_elr_swtablllty for real-time
assimilation.

(Courtesy Bouttier and Courtier 1999).
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enKF I1s a Monte Carlo method

It describes the covariance matrix by
sampling it with ensemble members

Evolves error statistics by ensemble integrations

Computes analysis based on ensemble perturbations and
measurement perturbations

Can use any time integration model (here diffusion) as a black
box

Converges to Kalman filter with increasing ensemble size

Fully non-linear integration contrary to extended KF



EnKF: Error Covariance Matrix

Define ensemble covariance around the ensemble mean
Pl ~ P! = (pf — 7)) (gpf — )T
P* ~ Pt = (" — §%)(¢" — §7)"

The ensemble mean ) the best guess

The ensemble spread defines the error variance.

A covariance matrix can be represented by an ensemble of
model states (not unique).




Discovered accidentally in 1958 by
Dr. Van Allen’s cosmic ray
experiment onboard explorer |
spacecraft.

Electron Radiation Belt . Energies >0.1 MeV

Inner belt 1.5-3 Re,
Outer belt 3-10

Slot region: flux
Mminimum near ~3 Re

- Radiation belt electrons
B) = relativistic electrons

Outer Belt




Radiation Belt Fluxes change during
Geomagnetic Storms - but

- —— ——— = m _ B_N_ _
Jan, 1-Feb 25, 1997 AprT 30-May 25, 1999 Feb. T4-23, 1998
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:  Geomagnetic storms can

S - increase or decrease

_____ 1| 100X Intreas radiation belt fluxes or just
‘‘‘‘‘ “ re-arrange
the belts.

* We don’t know why

— * Acceleration, transport,
and loss mechanlsms are
not well understood

* Traditional theories have
broken down under new
observations




DREAM: The Dynamic Radiation
Environment Assimilation Model

natural radiation belts

explosion-excited region

Developed by LANL to quantify risks from natural and artificial
belts

Uses Data Assimilation with GEO, GPS and other observations
Couples ring current, magnetic field, and radiation belt models

Anlc: ChiacifirnFiAarn Dradi~Fy 1Al lnAarcFanAin A



DREAM Computational Framework
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Observations
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Our data assimilation framework

Physical model: 1D radial diffusion

0p_ 0 4, 0gd

_9
or INH A 6/\E+ AAD T

with DLL after Brautigam & Albert 2000
DLL (Kp L) — 10(0.506Kp—9.325) LlO

and losses inside the plasmasphere (Carpenter & Anderson 1992)

L, =56-0.46Kp,,.

Last closed drift shell from TO1s model with a strong loss term ~ 10 min
Phase Space Density (PSD) data from 3 LANL Geo, Polar, GPS-ns41

Ensemble Kalman filter with augmented state vector for parameter
estimation: time dependent amplitude A of source term
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Estimate the global state as a function of the model and previous
observations.

Fill data voids or holes.

Predict and forecast future states based on previous observations and a
physics based model.

Estimate model parameters and bias to fit the data.
Carry along all uncertainties in observations and models.



Identify Missing Physics in the Model

B observation

* Residual Method ® forecast I
(Koller et al 2007) ’ assimilated state *
* Compare forecast with _
observations & M
* Calculate innovation M
VeCtOI’ y'HX (funCtIOI’l Of inconsistent with
nsistent bservation
L*1 mOdeI and data- svoitlf cs)lfservation (()mZE;IeIC’is?drifting”)

uncertainties)

i i+1 time

Residuals can now be used to identify “model drifts”

Is the model forecast consistently too low or too high compared
to the observations?

If yes, something most be wrong with the model.



Identical Twin Experiment %g

Model: Diffusion equation
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Identical Twin Experiment

Model lefu5|on equation without source:
Of _ 120 (DLL of

ith D1y, = DoL”
ot~ oL \ L2 8L) with Die = Lo

Assimilated state reflects source although process is not in the
model

true state Assimilated state of identical twin exp.
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Average Residual tells where model is drifting

Assimilated state of identical twin exp.

Use average residuals of 10 1
ensemble states to point to a 9 Io.5
“drifting” physics model 8 lo
where forecasts are 7 [,
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Where are the sources and losses?

relative residual at GEO
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Challenges: Accurate Error

accurate data error and model error descriptions necessary

Data error
for 1D radial diffusion, can use conjunctions

Model error

can use residual between model forecast and observatlons
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Challenge: Ensemble Inflation

Left: observations only
Right: radial diffusion model only without assimilation

model is clearly inadequate, data assimilation might help

Observations Plot Summary Plot

10 T T T T 10
b 10
] . , g
8 . ‘ 3 b 8
' ' | 10-7
T 7
-y
=
[+1]
Q
o lii 10 g o
5- " @ 5
w
£
4F 088 talgtag 0h,et ;ll!.sl':".,.|; 841 i 4
10
3+ 3
2+ 2
10
1 1

1 L L 1 1 1
206 208 300 302 304 306

I 10-6
107
- 10—8

I 10-°
1p-10

Phase Space Density



Ensemble Inflation

Here with data assimilation using enKF
missing acceleration term in physics model
a fixed model error is not representing the real model error

additional inflation and spreading in the ensemble is necessary
otherwise ensemble diverges

Observations Plot Summary Plot
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1. Inflate ensemble by adaptively adding white noise to the
model state to compensate for missing source term

2. Add bias to ensemble

These will enable the enKF to guide the ensemble towards the

observations
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Inflation Methods

applying and inflation method is key to compensate for missing
physics

Bias inflation is likely to be the most appropriate

no inflation with noise inflation with bias inflation

Al T




Summary

The DREAM data assimilation framework uses an ensemble
Kalman Filter (enKF) for

radiation belt assimilation and research

solar magnetogram assimilation (joint LANL-AFOSR project)
Challenges:

Watch out for accurate error descriptions for data and model

If model is very wrong like 1D radiation belt diffusion without
acceleration terms or special time varying boundary conditions,
then: an error inflation method might be quite appropriate

Most of the algorithms are available in SpacePy

§§a|:9|='=l

http://spacepy.lanl.gov
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