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The Daily Weather Forecast is a Product 

of Data Assimilation




http://guvi.jhuapl.edu


On the One Hand, we have large Quantities of 
Data


  Different kinds of instruments 
measuring different quantities 
(apples and oranges)


  Observations are in different 
places


  Observations have different 
cadence and availability


  Observations have different error 
statistics


Difficult to create coherent Picture




On the Other Hand, we have Mature 
Theoretical/Numerical Models


  Models contain our ‘knowledge’ of the physics


•   O+ - O Collision Frequency 

•   Secondary Electron Production 

•   Downward Heat Flow 

•   Chemical Reaction Rates

•   External Forcing

•   Etc. 


 Uncertain Parameters in Physics-Based Model




Objectives


  Optimally combine Data and the Model to create  

     coherent Picture of the Space Environment


 Solution satisfies the physical laws and ‘agrees’ with the data 
and the model as best as possible (within their error bounds) 




Data Assimilation Tasks


  Develop Physical Model


  Develop Assimilation Algorithm


  Data Acquisition Software


  Data Quality Control


  Executive System


  Validation Software  




Brief Historical Background


Data Assimilation in the Atmosphere:

  Initial Attemps started in the 1950th (NWP)


Data Assimilation in the Oceans:

  Began with large scales (mean properties) about 30 yrs ago

  Regional effords (e.g., Gulf stream) [15-20 yrs ago]

  Produce operational upper ocean now- and forecast.




Data Assimilation in Space Sciences


  Assimilative Mapping of Ionospheric Electrodynamics

    (AMIE, Richmond and Kamide, 1988)


  Initial Testing of Kalman Filter for Ionospheric Electron

    Density Reconstructions (Howe et al., 1998)


 Data Assimilation Models for the Ionosphere (late 1990): GAIM 
models, IDA4D


  Data Assimilation Models for the Thermosphere (Minter et al., 

    Fuller-Rowell et al.)


  Data Assimilation for the Radiation Belts


  Initial Attempts for Solar Data Assimilation




What can we learn from Meteorology?


Data Assimilation Techniques have been used in Meteorology for the last 50 years


  Most Accurate Specifications and Forecast Models are Those that 

   Assimilate Measurements into a Physics-Based Numerical Model


  Better Predictions are Obtained for the Atmosphere


–  When the Data are Assimilated with a Rigorous Mathematical Approach




Data Assimilation Techniques


€ 

  3-d Var


  4-d Var


  Kalman Filter

  xf = Mx + η

  Pf = MPMT + Q

  yo = Hx + ε

  K = PfHT (HPfHT  + R)-1

  xa = xf + K(yo - Hxf)

  Pa = (I-KH)Pf


€ 

J δx( ) =1/2δxTP−1δx +1/2 H δx + xb( ) − yo[ ]
T
R−1 H δx + xb( ) − yo[ ]

€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]



The Data Assimilation Cycle


‘Best-Guess’ 

Background


Short-Term

Forecast
 Analysis


Data

Collection


Quality

Control


Forecast


Physical Model creates a forecast which is adjusted by the Data to create an

 ‘analysis’, which serves as the start for the next model forecast. In the analysis


 the Data Errors and Model Errors are used as weights.




€ 

Fundamental Concept of 3D-Var


Start with a forecast or 
an estimate of the state 
(background)


‘Best-Guess’ 

Background


Short-Term

Forecast
 Analysis


Data

Collection


Quality

Control


Forecast




€ 

Fundamental Concept of 3D-Var


‘Best-Guess’ 

Background


Short-Term

Forecast
 Analysis


Data

Collection


Quality

Control


Forecast


Minimize the difference between the 
analysis and a weighted combination 
of 


  the background and 

  the observations.




€ 

The Cost Function


                               J = JB + JO + JC


JB: Weighted fit to the background field


JO: Weighed fit to the observations


JC: Constraint which can be used to impose 

       physical properties (e.g., analysis should satisfy 

       Maxwell’s equations, continuity equation, …)


To produce the analysis we want to minimize a 
“Cost Function” J  which consists of:




A typical form for the JB term is:


JB = (xA - xB)T B-1 (xA - xB)


Where: 


xA: Analysis Variable (e.g., Electron Density, Temperature, …)


xB: Background Field, obtained from the Model Forecast


B  : Background Error Covariance Matrix: 

•  How good is your Background

•  What are covariances between different elements


€ 

The Cost Function, cont.


The background error covariances are only poorly known




A typical form for the cost function for the observations is:


JO = [y - H(xA)]T R-1 [y - H(xA)]


Where: 


y  : Represents all Observations


H : Forward Operator which maps the Grid Point Values to 

      Observations (can be linear or nonlinear)


R  : Observation Error Covariance Matrix: 

How good is your data? 

(also includes the representativeness of the data)


€ 

The Cost Function, cont.




€ 

The Cost Function, cont.


The Physical Properties/Model were used to:


  Obtain the best possible background field

  To constrain the Analysis


  Cost function and the constraints are not explicitly 
time dependent


 A temporal model is not necessarily required


 Snapshots




€ 

Fundamental Concepts of 4D-Var


4D-Var introduces the temporal dimension to data assimilation


Find a close fit to the data that is consistent with the 

dynamical model over an extended period of time.


  Find the the closest trajectory


€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]

 The Model
 The Data




€ 

Fundamental Concepts of 4D-Var


4D-Var introduces the temporal dimension to data assimilation


Find a close fit to the data that is consistent with the 

dynamical model over an extended period of time.


  Find the the closest trajectory


€ 

J δx( ) =1/2δx0
TP−1δx0 +1/2

i= 0

n

∑ Hi Mi,o(x0)( ) − yio[ ]
T
R−1 Hi Mi,0(x0)( ) − yio[ ]

Model Error Covariance
 Data Error Covariance




  M -  State Transition Matrix

  P  -  Model Error Covariance

  y  -  Data Vector

  R -  Observation Error Covariance

  X -  Model State Vector

  η  -  Transition Model Error

  Q - Transition Model Error Covariance

  H  - Measurement Matrix

  ε  -  Observation Error

  K  - Kalman Gain


Model Error Covariance


Data Error Covariance




  M -  State Transition Matrix

  P  -  Model Error Covariance

  y  -  Data Vector

  R -  Observation Error Covariance

  X -  Model State Vector

  η  -  Transition Model Error

  Q - Transition Model Error Covariance

  H  - Measurement Matrix

  ε  -  Observation Error

  K  - Kalman Gain


Model




Model

The Dynamical Model entered 
the Filter:


  Evolution of the State Vector 
(make a Forecast)


  Evolution of the Error 
Covariance Matrix




Model

The Dynamical Model entered 
the Filter:


  Evolution of the State Vector 
(make a Forecast)


  Evolution of the Error 
Covariance Matrix


 Error Covariance Matrix becomes time-dependent and 
evolves with the same physical model as the state!


This is computationally the most expensive  
step in the Kalman filter 



A rocket is flying through space launched from an initial 
location with an initial velocity. 

Example: Tracking of a Rocket with a Kalman Filter 

€ 

m d2x
dt 2 = ma    ⇒

€ 

dv
dt

= a

€ 

dx
dt

= v

€ 

⇒   xi+1 ≈ xi + vi ⋅ dt

€ 

⇒   vi+1 ≈ vi + ai ⋅ dt

€ 

⇒   ai+1 ≈ ai

€ 

xi+1
vi+1
ai+1
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xi+1 = M xiIn Kalman filter we have:




Example: Tracking of a Rocket with a Kalman Filter 

€ 

P0 =

σ x
2 0 0
0 σ v

2 0
0 0 σ a

2
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€ 

Pi+1 = M Pi M
TPropagate Error Covariance Matrix:
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1 dt 0
0 1 dt
0 0 1
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At the next time step:




Example: Tracking of a Rocket with a Kalman Filter 
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Pi+1 = M Pi M
TPropagate Error Covariance Matrix:


At the next time step:
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The Rocket 

Position Velocity Acceleration 



Kalman Filter has specified the external Forcing


Forcing is specified based on the Dynamics 

provide by the physical Model




Next, consider the more complicated situation:


  Much more complicated Differential Equations


  Global Reconstruction


  Many observations 


  Different kinds of instruments measuring different 

    quantities


  Observations are in different places


  This is the Situation in the Ionosphere




Model


This is computationally the most expensive  
step in the Kalman filter 



Ways to get around the Problem 

 Approximate Kalman Filters 

Do not evolve Error Covariance Matrix with Model 

INSTEAD 

Obtain Error Covariance Matrix from an ENSEMBLE of  
Model runs 

•  Band-Limited Kalman Filter

•  Reduced State Kalman Filter

•  Gauss-Markov Kalman Filter

•  Ensemble Kalman Filter




 Gauss-Markov Kalman Filter Model�
(GAIM-GM)


  Specification & Forecast of the Global Ionosphere


•  Ionospheric Forecast Model provides background densities


•  Kalman filter solves for derivations from the background


•  Uses simple statistical model instead of full physics


•  Error covariances are calculated from 1104 IFM model runs


•  Assimilates 5 data types: 

•  Slant TEC from ground-based GPS receivers

•  Bottomside Ne Profiles from Ionosondes

•  UV radiances (1356Å and 911Å)

•  DMSP IES in situ Ne

•  Slant TEC from COSMIC




GAIM-GM  Model Run for November 20, 2003 Storm




Illustration of Locations of

GPS/TEC Data. Slant TEC 

Values have been mapped 

to the Vertical Direction


GAIM Specification of TEC 
Distribution




Illustration of Locations of

GPS/TEC Data. Slant TEC 

Values have been mapped 

to the Vertical Direction


GAIM Specification of TEC 
Distribution




•  Ensemble Kalman Filter

  30 Global Simulations are Launched at Each Assimilation Time Step 


•  Physics-based Ionosphere-Plasmasphere Model

•  Model Physics is embedded in Kalman filter


•  Same 5 Data Sources as Gauss-Markov Model


•  Provides both specifications for the ionospheric 
plasma densities and drivers.


Full Physics Kalman Filter Model




Determination of Ionospheric Drivers Using 

The Full Physics-Based GAIM Model


  Ionospheric Sensitivities to Drivers are embedded in the

    Covariances and are automatically and at each Time Step  

    calculated.


  Drivers include:


•  Electric Fields

•  Neutral Wind

•  Composition

•  … 




Example of Full Physics-Based Kalman Filter Model�

•  Several Days in March/April of 2004


•  Geomagnetically Quiet Period


•  Data Assimilated

o  Slant TEC from 162 GPS Ground Receivers


•  Use Ionosonde Data for Validation




Comparison with Ionosonde Data


Ionosonde Data were NOT assimilated!




 Data Issues


•   Are There Enough Data?

•   What is the Data Quality?

•   Are Error Estimates Available?

•   Are Data Available in Real Time?

•   Are Different Data Types Required?




 Missing Physics


   How Does Missing or Incomplete Physics Affect the Data 
Assimilation Results? 


•   Simulate the Ionosphere with the IPM

•   Modify the Simulated Ionosphere to Account for 


Missing Physics  

•   Generate Synthetic Data from Real Locations 

•   Reconstruct the Ionosphere with the Gauss-Markov Data   
Assimilation Model 

•   Compare Reconstructed Ionosphere with 



Original Ionosphere  




Gauss-Markov Reconstruction 
With Synthetic Data


Results Look Reasonable, but 
are Wrong


Ionosphere That Produced Synthetic 
Data


Four Bubbles




Summary



