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The idea of a diffuse hydrogen corona surrounding the
earth (i.e.,the geocorona) -- and its possible thermal escape --
dates back to the mid 19th century

— The first real detection would have to wait until the space age...
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The modern era of geocoronal research began in 1955 with the
detection of intense (hydrogen) Lyman alpha “nightglow” at
altitudes above 75 km by a NRL sounding rocket

— early controversy... terrestrial, interplanetary??

— eventually revealed that the emission was due to the resonant scattering of
solar Lyman alpha photons by geocoronal hydrogen
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— eventually revealed that the emission was due to the resonant scattering of
solar Lyman alpha photons by geocoronal hydrogen




Why is this interesting?

Chemistry
Escape
Evolution
Physics
Global change
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H escape Strobel, 1972

? TABLE 2. Photochemistry and transport of hydrogen constituents
. base
Atomic hydrogen Fobe e
increasingly dominant 200 X A
with altitude Lo, cm

820+hv->H+OH

H2+0*H+OH

0H+O-’H+02

[H,0]
Mesopause [;] ~ (1-2) x 1078 f I f
CH,, H,O, H, chemistry lopon0 Togan Toyamp
& photolysis reactions H,0 + hv + H + OH
A [Cﬂ_ul‘lo-a H + HO, +~ H, + 0,
[M] ¢_(H,)
Stratopause — ? 1 s 2
[H,0] (H,0)
2 _x6x 106 b5y
[M]
0(°p) + CH, = OH + CH,
oc*p) + CH, » OH + CH,
olp) + H, » H + o
oclp) + H,0 + 0n + o
H"’OZ‘PH"HOz'PH
[::OJ =3 x 1078 OH + HOp + H,0 + 0,
1 Tropopause ¢ ¢ f
o lo 00 To conp o quy
Sources of methane: [—:] Z 0.5 x 1078
: w_etlands, farmlng{llvestock, fen,1 y Destsustion of ci, ¥
A W e e biomass burning, industry ot
= [H20] variable
®(CH,), ®(H,0), ®(H,) M1
Surface r f f
1(http://earthobservatory.nasa.gov/Features/BiomassBurning/) |¢g(H20) |¢g(CHu) IOE(HZ)?
2© Pekka Parviainen (http:/lasp.colorado.edu/noctilucent clouds/)

(The subscripts of ¢ denote its magnitude at a given level.)
3Carruthers et. al, 1976
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Evolution
exospheric physics

Jean-Luc Dauvergne, Francois Colas, Apollo 17 Crew, NASA Galileo Project, JPL, NASA
IMCCE/S2P, Obs. Midi-Pyrénées




GEOPHYSICAL RESEARCH LETTERS, VOL. 16, NO. 12, PAGES 1441-1444, DECEMBER 1989

HOW WILL CHANGES IN CARBON DIOXIDE AND METHANE MODIFY THE
MEAN STRUCTURE OF THE MESOSPHERE AND THERMOSPHERE ?

R. G. Roble

High Altitude Observatory, National Center for Atmospheric Research

R. E. Dickinson Percent change: H (cm3)
Climate and Global Dynamics Division, National
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- A daughter of H,0 and CH,

— distribution in the mesosphere and lower thermosphere is a key
parameter in understanding the chemistry of the upper atmosphere
(MLT photochemistry and dynamics)

« Planetary escape and the distribution of atomic hydrogen out into
the interplanetary medium

— role in planetary evolution and exospheric phenomena

- Inconsistent observational evidence for H’s mean state in the
thermosphere and exosphere (e.g., seasonal variability and
response to solar forcing)
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Okay, now take a step back...
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Regions

outer space

upper atmosphere

stratosphere

troposphere

Expedition 23 Crew, NASA




Regions
defined by gradients in temperature

http://www.windows.ucar.edu/

‘ ionized F-layer

reflected
short wayve
radio signals

520 km

I Exosphere
510 km

northern
lights

lonized E-layer

lonized D-Layer

el weather (]
sSpy plane balloon *

Mesosphere

500/1500

-- ionization & other stuff --




Regions

defined by gradients in composition

exosphere homosphere

\ 0 - 100 km

What’s up with all this H??

turbopause heterosphere
100 - 500 km
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Flow

® =—Dn 1 dn,-_l_mig_l_(1+ocT)dT _Kn 1 dni+mag+ldT
n. dz kT T dz

C l )y n.dz kT T dz

above 100 km below 100 km

7

Turbulent mixing and molecular diffusion are competing processes
in the atmosphere

— leads to changes in atmospheric mixing & composition with altitude
- Eddy diffusion dominates below 100 km (K >> D,)

— turbulent well mixed atmosphere

— homosphere
- Molecular diffusion dominates above 100 km (K << D,)

— tends to produce an atmosphere with species-wise density profiles
— heterosphere

The Earth’s Hydrogen Corona
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Hydrostatic

\1/H, \1/H

® =-D ldn (1+oc)dT —Kn ldnl.ldT
n, dz T dz

above 100 km below 100 km

«  Make some assumptions... isothermal, ®=0...
— hydrostatic equilibrium

n =n, exp(—z/H)
n,=n_exp(-z/H,)

- The quantity H is known as the scale height
— His an important parameter in any atmosphere
— e-folding distance
— essentially the rate at which pressure (density) changes with altitude
— the smaller the scale height, the faster the decrease
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A simple two layer hydrostatic model

Model assumptions below 100 km:
- Well mixed with a mean molecular mass M = 28.97 (dry air)
- Isothermal with T = 250 K
- g(z) = const. = 9.8 m/s?
- Results in a constant scale height: H = 7 km
- U.S. standard atmosphere number density:
Ng. =2.5x 10" cm?3

Model assumptions above 100 km:
- Molecular diffusion dominates
- Isothermal with T = 960 K
- Each constituent with its own scale height (based on mass)
- Number densities matched at 100 km
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or the tenuous uppermost reach of the
earth’s neutral atmosphere

~ The Exosphere

t“c\é

Is a Death Metal Band From Holland




Exobase

« Inthe barosphere (homosphere & heterosphere) atoms &
molecules interact through frequent collisions

— thermal (Maxwellian) kinetic distributions

- As mean free path is inversely proportional to number density, a
level is eventually reached where mfp > H

— density & mfp N (mfpg,=107 m)
— collisions are less and less likely...
— the atmosphere can no longer be treated as a fluid

- The exobase is defined as the level at which mfp = H

— classical treatment of the exosphere assumes a Maxwell-Bolizman
distribution below r, and a collisionless region above r,
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Planet. Space Sci. 1963, Vol. 11, pp. 901 to 960. Pergamon Press Ltd. Printed in Northern Ireland

PLANETARY CORONAE AND ATMOSPHERIC
EVAPORATION*

JOSEPH W. CHAMBERLAIN
Kitt Peak National Observatory,t Tucson, Arizona

{(Received 6 May 1963)

Abstract—A. comprehensive theory is presented for the region of a planetary atmosphere
where collisions are rare and where the controlling factors are gravitational attraction and
thermal energy conducted from below. Although the subject of this article originated literally
with the kinetic theory itself, until recently attention has been confined to atmospheric
evaporation.

- Classical treatment assumes a Maxwellian distribution below r,
(exobase) and a collisionless region above

- Velocity distribution is determined by the free motion of particles in a
gravitational field

— divided into 3 populations based on whether or not their kinetic
energy exceeds the earth’s gravitational potential and whether or
not their trajectory intersects the exobase

Ballistic, Satellite, & Escape
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Velocity distribution

satellite critical
level r,

N

sxosphere

heterosphere
the exobase (~500 km)
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Escape

* Neglecting collisions, a particle moving vertically upward will escape
from the earth’s gravitational field if its KE > PE:

lmV2 >mg(r)r
2
— solving, v,=10.77 km/s at 500 km

- For agasin TE the most probable molecular velocity is:

/2kT
u=,—
m

— If u> v, the gas will flow out like a fluid (e.g., the solar wind)
— for present day exospheric temperatures this rapid escape cannot occur
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- The maximum thermal production of escaping atoms will occur
near the exobase where the density is high enough to maintain a
significant collision rate, yet small enough (in the vertical) to permit
high velocity atoms to actually escape

— thermal (Jeans) escape flux for H: ~7 x 107 atoms cm=2 s

- In order to escape, hydrogen must first get to the exosphere
— flow through the lower atmosphere sets this limit

- Limiting flux concept...

— estimates of the upward flow of H from the lower atmosphere implies
an escape flux of:

~3 x 108 atoms cm=2 s
— assumed constant over a solar cycle

— this escape flux over geological time scales may be sufficient to
generate the present day O content of the atmosphere

— thermal (Jeans) escape flux is a factor of ~2-3 times too low
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There’s more than one way to escape!
charge exchange, polar wind

Tinsley, 1973 (Cole, 1966)
H+H, —H, +H
H +O <« H+O°

NASA/ESA
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There’s more than one way to escape!
total: Jeans + CE

He, BU Thesis (with Kerr), 1995
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Okay, back to 1955
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Planet. Space Sci. Pergamon Press 1959. Vol. 1, pp. 3-6. Printed in Great Britain,

FAR ULTRAVIOLET RADIATION IN THE NIGHT SKY*

J. E. KUPPERIAN, Jr., E. T. BYRAM, T. A. CHUBB and H. FRIEDMAN
U.S. Naval Research Laboratory, Washington 25, D.C.

(Received 2 October 1958)

Abstract—Rocket measurements have shown that the night sky is aglow with a diffuse Lyman-¢
(1216 A) emission amounting to 10—2 erg cm—2sec~! from the entire hemisphere. The glow

was so bright that celestial sources of Lyman-¢ could =~* e Aatantad shonnak ‘; NC?R ;H“"'"“"'""‘“'
near 1300 A discrete celestial sources were obse

from the entire sky in the wavelength interval 1225 60Fn:
Z
>
-4
-2
270° 36 z S 90°
WEST < EAST
37
2.7
32\
34 3
T80° SOUTH

UNITS 10~3ERGS/ CM¥/SEC/STERADIAN
Fig. 1. Lyman-2 directional intensity contours when the detector looked at the
upper hemisphere. These data were obtained from the portion of the flight above

130 km and are uncorrected for the 1225 to 1350:\discrete sources. The smallest
intensity contour circle contains the anti-solar direction.
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Methods

- AE Satellite Mass Spectrometers
— H derived from in-situ composition measurements of H*, O* & O
— charge exchange equilibrium -- valid below 400 km
— basis of MSIS H
— e.g., Brinton et al., 1975

« Lyman-alpha (121.6 nm) & Lyman-beta (102.6 nm)
— type of information obtained depends on the orbit
— e.g., Meier and Mange, 1970 OS0O4/0G0O4
* N & T,
* Diurnal variation of n, ~1.8 (max ~0500 hours, min ~ 1600 hours)
— Anderson et al., 1987 (Bush & Chakrabarti, 1995; Bishop, 1999)
« Lyman-alpha limb scans STP 78-1, March 1979
* [HI(2)
- gold standard

- Balmer-alpha & Balmer-beta
— more on this later

« Abs. cells, etc...
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At about the same time as the n=0 I
NRL Lyman alpha (121.6 nm)
detection, ground-based n=>
observers detected Balmer

alpha (656.3 nm) in the night n=4

sky
— Balmer alpha “nightglow”
n=3
— the result of solar Lyman
beta scattering Y
— Balmer alpha fluorescence p
~12% of the time e *

Balmer Series

o

Lyman Series
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Concentration of Nightglow H -emission
to the Ecliptic and the Radial Velocities
of this Line

Durina the winter of 1962-63 I examiz
tion of H,-intensity over the night sk
étalon was used with a spacing of 0-3 r
coefficient 0-91 at H,. An interference filtor ©
half-width was used as premonochromator. A contact
image intensifior was used for registering the fringes. The
whole systern was installed on a small equatorial mountod
in a tube in which temperature was controlled. The
observations were made at the high-altitude station of the

ne 44°, h=3,000 m)
sufficient to
sky, including

the distribu-
A Fabry- Perot

One-hour eoxposure was
fringes at any point of the

near Alma-A
record I and
the zenith.
The distribution of the night-glow H,-emission shows a
considerable concentration to the echptdc and to the Sun.
'If the Ha 1nter1.31ty in the antisolar pomt 1s takon as 1, the

tion of 90° (mormng side) is shown in an 2. The inten-
sity of H, in other point of the night sky at the same
zenith distance, but far from the ecliptic, shows no
enhancement. During the observations the regions close
to the Sun wore situated far from the Milky Way; its
position is marked on Fig. 1. Tho H-intensity at 70°

1 o
£ 109 o
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% 08 4 T . °
g 06
L 069 [ °
= . o
-? 0-4 ¥ 3 . .
o .
- 024 Milky Way .
o O
an-‘/ . cusa s
0§ ™ T v n
0 90° antisolar 90° 0
direction
Fig.1
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&
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2 : e
§ 08 : ° L
=
206 o )
7 04 : s .
a Milky Way .
X 0-2 . .‘/ R m o
0 ™ ™ T ¥ .
0 90° antisolar 90° 0
direction
Fig.1

was observed but not very certainly.

The small radial velocity and narrowness of the night-
glow H, line are strong arguments for its atmospheric
origin. The observation can be fitted with the following
model: neutral hydrogen forms a disk in the ecliptic plane
5,000 km thick and extended up to 3,000 km in the even-
ing and to 10,000 km in the morning. During the night
the hydrogen exosphere becomes denser as shown in a
rocont paper of Donahue (private communication). At
sunrise intense dissipation begins, but the density romains
high enough during several hours. It isa plausible explan-
ation of the east-west asymmetry of the H, night-glow.
Such measurements can be used for determining the den-
sity of the exosphere, which depends strongly on the tem-
peraturo of the thermopause. An interesting observational
problem is the interaction of the Doppler-shifted Fraun-
hofor line in the zodiacal light and the H, night-glow when
observed with finite spoctral resolving power. Wo have
perhaps observed a darkening of the emission line at
elongation near 90° due to such interaction.

P. V. Sgecrov

Sternberg Astronomical Institute,
Moscow.
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Fabry-Perot, Michelson, SHS

high throughput interference spectroscopy

« Throughput advantage over grating devices

— ability to pass a large solid angle of light into a small spectral interval
« The crux of the issue:

— Grating: A o sin6 (~0)

— Fabry-Perot: Lo.coso (~6?)

- For a givenspecitral interval 6Aa much larger opening angle 66 is
allowed for the Fabry-Perot (Michelson or SHS)

0
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High-Resolution/High-Throughput Spectroscopy
a powerful tool to study the WIM (and the geocoronal)

LOW-INTENSITY BALMER EMISSIONS FROM THE
INTERSTELLAR MEDIUM AND GEOCORONA
R. J. REYNOLDS*

NASA, Goddard Space Flight Center, Greenbelt, Maryland
AND
F. L. ROESLER AND F. SCHERB

Physics Department, University o
Received 1972 June 12, revi.

October, 1971 _January, 1971

L * a) 105 ]

Galactic and he diffusell o * 1001
resolved witll a Fabry-Perot spectrometer. The nongalal $ 7.01
most of the enis greafer than 30§ & 951
yield values for_ the average fonization rate per hydroge 2 6.5k '
I. INTRODUCTI g + ﬁ* H + 00
. . . ._ N B
A study of faint, diffuse galactic H« and HBJ £ 60} ﬁ ”h%
150 mm diameter pressure-scanned Fabry-Perotd S * 21 CM ﬂ 65l
55

the 36-inch (91-cm) telescope at Goddard Spa

spectrometer has a spectral resolving power of LSR
field of view. Faint HB emissions that do not ap AV | 8.0
H 11 regions have previously been observed by Jo =50 V(Km(;s) +50

and by Daehler et al. (1968) and Reay and Ri
meters; but low spectral resolution prevented t
to discriminate between galactic and possible local emission sources. Since the galactic

hydrogen often has radial velocities of + 25 km s~* or more with respect to the Earth,

it has been possible with the present spectrometer’s 12 km s~ resolution to resolve the A /’L V

unshifted (probably geocoronal) Hoe and HP lines from the galactic lines, and thus _ T

unambiguously determine for a variety of observation directions the relative contri- -

butions of each source to the line intensities. A‘ C
0
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Velocity Resolved Ho. Emission Lines (Image: G. Madsen)
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Line Profile
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GEOPHYSICAL RESEARCH LETTERS, VOL. 7, NO. 11, PAGES 967-970, NOVEMBER 1980

MEASUREMENTS OF THE SPECTRAL PROFILE OF BALMER ALPHA
EMISSION FROM THE HYDROGEN GEOCORONA

J. W. Meriwether, Jr., S. K. Atreya and T. M. Donahue

Space Physics Research Laboratory, Dep
and Oceanic Science, The University of Michig

2000 — T —
R. G. Burnside - -
Department of Physics, Universi 1600} 1415 MARCH 1980 -
Rio Piedras, Puerto Ri I #_ _____ 4 J
‘‘‘‘‘‘ -~ EXOBASE
1200 * J TEMPERATURE =~ —~~- * --,* u
Abstract. Instrumental improvements responsible for a factor firm i i
of 25 increase in the sensitivity of the Fabry-Perot interferometer The 800 ~
enable us to observe for the first time the short wavelength de- afa — - N
pletion of the Balmer o spectral profile due to hydrogen escape. maxi X 400} * * —
These results are shown to be consistent with the implications of tami W R i
OGO-5 observations by Bertaux. sensi % 0 — —
|..
INTRODUCTION a seri é i + i
R The G 1600} .
Because the geocorona is optically thin at the wavelength of the o i ]
atomic hydrogen Balmer alpha (Hgq) emission line at 6562.8A, a;“‘ = + . + + + . ,i,
ground-based observations at high spectral resolution of the gaia i~ 1200 * + 7
spectral profile of Ha, produced by hydrogen fluorescence of F:lc;ns i + T
Lyman 8 photons, are linked directly to measurements of the zvo:l 800 -
velocity distribution of hydrogen atoms. Chamberlain [1976] and - -
Prisco and Chamberlain [1978; 1979] have made extensive calcu- o; 0 400} 12/13 MARCH 1980 .
lations concerning the expected shape for the zenith orientation, e R i
but the predicted departures from the Maxwellian profile are small e 0 L R L,
and difficult to observe. The first observations of the Ha spectral inte 20 22 0O 2 4 6
profile at high resolution were made by Atreya et al. [1975] with 4
a Fabry-Perot interferometer of low sensitivity (0.05 counts/secR). ?p pli TIME (AST) ]
By averaging all observations obtained each night, values for the 'mpro¥ Fig 4. Temperature plots deduced from apparent thermal width
apparent thermal width were found to lie in the range between 700 18 ré of Hq for 12/13 March and 14/15 March, 1980. Temperature
and R50K

error bars span +2 standard deviations.

The Earth’s Hydrogen Corona
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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. All, PAGES 12,389-12,397, NOVEMBER 1, 1987

Geocoronal Structure
3. Optically Thin, Doppler-Broadened Line Profiles

JAMES BISHOP AND JOSEPH W. CHAMBERLAIN

Department of Space Physics and Astronomy, Rice University, Houston, Texas

Theoretical line profiles, applicable to t 1.00 T T w
ed for illustrative cases. While retaining ?&B.,ASE
equilibrium plasmasphere conditions), dis
corona are isolated. Examining the conse O0.75
here. In the prototype evaporative case, r Satellite
of an extensive quasi-satellite component
theory discloses the influence of an exo 0.50 T
spectral shapes in the geocoronal applicat
(1) a blueward “shift” or bias near line cen
by loss mechanisms acting over the time < 025f Sotellite T
tion) and (2) an enhanced redward wing a S PN ’
height escape speed, produced by plasmas = 0.00|2_ . _,_f_’_ Escope N . {/
for recent observations of geocoronal H, li = 100F * ' '
= 6.632 Rg
- 0.957
A
- 0751 Satellite T
0.50 T
0.25r T
Ballistic
0.00 L. B3¢ we. -\, _ih

RADIAL SPEED &
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Geocoronal Structure, 2. Inclusion of a Magnetic
Dipolar Plasmasphere

James Bishop
Department of Space Physics and Astronomy. Rice University. Houston, Texas

Joseph W. Chamberlain
Department of Space Physics and Astronomy. Rice University, Houston. Texas

Calculations of exospheric quantities (hydrogen ator
kinetic temperature, and escape flux) at locations al

midnight directions have been extended to incorpo Geocoronal Structure: The Effects of so'_ar Radiation
shape and an empirical temperature profile. This int Pressure and the Plasmasphere Interaction

corresponding to low-to-moderate solar conditions,

geocoronal positions: the effect is not dramatic. tholl James Bishop

evaporative case closely. in spite of the control of traf Department of Space Physics and Astronomy, Rice University, Houston, Texas
collisions. A careful discussion of the handling of p

solar ionization is included, and the effect on the ex: X . 2 S .
S . .8l The theory of planetary exospheres is extended to incorporate solar radiation pressure in a
terms of pertinent examples. In addition, the geotail

. . . . rigorous manner. and an evaporative geocoronal prototype (classical. motionless exobase) is
imposition of an exopause by radiation pressure dy .

constructed using Liouville’s theorem. Model calculations for density and kinetic temperature at
points along the earth-sun axis (solar and antisolar directions) reveal an extensive satellite

Citation: Bishop, 1., and J. Chamberlain (1987), Geocoro

L g o . %
Plasmasphere, J. Geophys. Res., 92(A11), 12377-12388. component. comprising ~443 of the total hydrogen density near 10 earth radii, and a temperature

profile suggestive of an isotropic quasi-Maxwellian velocity distribution for the bound
component. A geotail is also evident as an enhancement of the density at local midnight
compared to local noon that increases outward (from ~25% at 10 earth radii to over 60% at 20
earth radii). Additional mechanisms acting upon the geocorona alter the basic evaporative case in
notable ways. Solar ionization has been included in a simple fashion; the effect is to partially
deplete the density without otherwise altering the structure. Interaction with a simple
plasmasphere via the Boltzmann equation results in “heating” the geocorona and enhancing the
escape flux at the expense of the density of the bound component, an effect not appreciated in
earlier studies: the geotail survives this interaction.

Citation: Bishop, J. (1985), Geocoronal Structure: The Effects of Solar Radiation Pressure and the
Plasmasphere Interaction, J. Geophys. Res., 90(A6), 5235-5245,
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PBO and WHoM

for Aeronomy & Astronomy
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TRANSPORT OF RESONANT ATOMIC HYDROGEN
EMISSIONS IN THE THERMOSPHERE AND GEOCORONA:
MODEL DESCRIPTION AND APPLICATIONS

JAMES BISHOP
Computational Physics Incorporated, Fairfax, VA 22031, USA

(Received 27 February 1998)

Abstract—A computer code for calculating global models of atomic hydrogen Lyman series
volume excitation rates and line-of-sight radiances has been developed for upper atmospheric
modeling and remote sensing data analyses. It is based on the Anderson-Hord algorithm for
solving the integral form of the transport equation and rigorously accounts for nonisothermal
and pure absorption eflects within the complete frequency redistribution approximation.
Preliminary variants ol the code have been in use by several groups lor several years, and a [ully
tested version is now available for distribution. In this paper, the method for solving the
transport equation is briefly reviewed and the key parameters identified. Validation of the code
is illustrated via comparisons with previously analyzed data sets: STP 78-1 EUV spectrometer
limb profiles and geocoronal “images™ obtained with the UV imaging photometer on DE-1.
© 1999 Elsevier Science Ltd. All rights reserved.
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PERGAMON Journal of Atmospheric and Solar-Terrestrial Physics 63 (2001) 341-353

Analysis of Balmer « intensity measurements
near solar minimum

J. Bishop®*, J. Harlander®, S. Nossal°, F.L. Roesler®

3E.O. Hulburt Center for Space Research, Naval Research Laboratory, Code 7643, 4555 Overlook Avenue,
SW, Washington, DC 20375-5320, USA
LSt Cloud State University, St. Cloud, MN, USA
¢ University of Wisconsin-Madison, Madison, WI, USA

Received 15 December 1999; accepted 3 April 2000

Abstract

Balmer o intensity measurements made with a dual etalon Fabry—Perot spectrometer at Haleakala during two campaigns
in 1988 are presented. The data from each campaign demonstrate night-to-night stability, despite variations in geophysical
conditions. Analysis of these data using a nonisothermal Lyman f radiative transport code, updated solar Lyman f line-center
flux estimates, and corrected thermospheric atomic hydrogen density profiles points to the resolution of the “factor of 2"
problem. A careful reassessment of other mechanisms for upper atmospheric Balmer « excitation has also been carried out.
(©) 2001 Elsevier Science Ltd. All rights reserved.
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Radiative transport code: lyao rt

« lyao_rt (Bishop, 1999)
— Spherically symmetric non-isothermal atmosphere
— Generates global source functions & ACERs (intensities)
« lyao_rt and H(z)
— Bishop’s 3-parameter diffusive flow algorithm (Bishop, 2001)

— Exobase density [H],
* Mesopheric peak density [H] .,
« Photochemically initiated upward flux ¢(H)
« MSIS background atmosphere
— T(2), [O](z), [N,](z) and [O,](z) profiles
- Extension of H to exosphere via analytic geocorona of Bishop (1991)
(T, and n,)
— Or evaporative case
— or Chamberlain model (r)
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Radiative transport code: lyao rt

||||||||| l'|"|||||III]|||'|'l|"|||V|'|ll]'||'|"l"|||'||| —llllllllllllllllllllllllll’ll|IllllllllIlllllllllllllll’lll-
14— — 14— I d | <& MSIS =
- WHoM dat + ZA=14560 ] I yao_rt moae _ 1
- B - + Fitto data -
L <O ZA =30-45 - .
12 - 12 -
10}~ - 10—
o [ ] -
]
? 8 — 8
& | L
61— - 61—
Y- - 4
2 X “*WW 2
I Lvsviney Levivnnan v eviney Lvsianaiy Lvsviien ] ] I [ [ Leviuiiiias Ly I
0 1000 2000 3000 4000 5000 600C 0

The Earth’s Hydrogen Corona Mierkiewicz, CEDAR 2010



6 = L} L] I l L I L] l L ) I l Ll L] 1 l L] ] l. l Ll L] .l =
> E Nossal et al., in preparation 3
= F )
C - 3
Z LF WHAM 2000 Int/LYAO MSISO0 Max -
= 2E WHAM 2006 Int/LYAQ MSISOO Min
o F _ _ WHAM 2000 Int/LYAO TGCM Max -
5 f WHAM 2006 Int/LYAQ TGCM Min 7
= r:
S Ik g
0 - ]
A= K -
L 3F - =
° L - 3
a L - —— i
Q L a
7] - -
0 = o
O 21 =]
- [ ]
<T - Z
T = a
= 8 Remsegsy Swolorews 0 eoeees ]
S e 2090 T v =
o F 2
5 E ]
o B 2

O ™ L i 1 l 1 L 1 l L 1 L l 1 L 4 l L i L l 1 L 1 =]

0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10* 1.2x10*

SHADOW HEIGHT  (KM)

The Earth’s Hydrogen Corona Mierkiewicz, CEDAR 2010



Solor Cycle Comporlson at 2800km
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Radiative transport code: lyao rt

our goal: map-out atomic hydrogen density distributions
from 100 - 20,000 km (and beyond)

« lyao_rt (Bishop, 1999)
— Spherically symmetric non-isothermal atmosphere
— Generates global source functions & ACERs (intensities)
« lyao_rt and H(z)
— Bishop’s 3-parameter diffusive flow algorithm (Bishop, 2001)

Mesopheric peak density [H] .,
« Photochemically initiated upward flux ¢(H)
« MSIS background atmosphere

— T(2), [O](z), [N,](z) and [O,](z) profiles
- Extension of H to exosphere via analytic geocorona of Bishop (1
T, andn,)

— or Chamberlain moderTr)

assess the degree to which these
parameters might be constrained
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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, A05307, doi:10.1029/2003JA010165, 2004

Data-model comparison search analysis of coincident
PBO Balmer o, EURD Lyman 3 geocoronal
measurements from March 2000

J. Bishop
E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D. C., USA

E. J. Mierkiewicz and F. L. Roesler

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA

[1] Recent Lyman series and Balmer series airglow measurements provide a fresh
opportunity to investigate the density distribution and variability of atomic hydrogen in
the upper atmosphere. Dedicated nightside Balmer o Fabry-Perot spectrometer
measurements at the Pine Bluft Observatory (PBO), University of Wisconsin-Madison,
have been acquired since late 1999 taking advantage of several technological advances.
Extreme ultraviolet spectral radiance measurements by the Espectrografo Ultravioleta
extremo para la Radiacion Difusa (EURD) instrument on the Spanish MINISAT-1 satellite
from October 1997 to December 2001 provide extensive sets of geocoronal Lyman 3,
Lyman vy and He 584 A emission intensities. In this paper, coincident EURD Lyman 3 and
PBO Balmer o radiance measurements from the early March 2000 new moon period are
presented. In addition to serving as examples of the data sets now available, the data
volume poses an analysis challenge not faced in prior geocoronal studies. A data-
model comparison search procedure employing resonance radiation transport results for
extensive sets of parametric density distribution models is being developed for use in
analyses of multiple large data sets; this is described, and example results for the PBO
and EURD March 2000 data sets are presented. The tightness of the constraints obtained
for the solar line-center Lyman 3 irradiance and the atomic hydrogen column abundance
is somewhat surprising, given the crudeness of the parameter binning in the search
procedure and the fact that a small number of recognized corrections remain to be made
to each data set. INDEX TERMS: 0310 Atmospheric Composition and Structure: Airglow and aurora;

J. F. Gomez and C. Morales

Laboratorio de Astrofisica Espacial y Fisica Fundamental,

Received 28 July 2003; revised 3 February 2004; accepte
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Parametric model database
PBO/EURD model parameters

The range of model parameters used in our search

Parameter Grid

[H]. 2,2.8,4,57,8,11.3 x 10* cm?3
O(H) 03,1,3,9x 108cm?s’!

[H] e 03,1,3,9x 108 cm?3

T, 450, 600, 750, 1100 K

f(n,) 0.73,1.0,1.36

f(Fp) 0.85,1.0,1.15

« lyao_rt was run to generate an extensive set of source functions
based on the parameters defined above

- LOS intensities were generated for each PBO/EURD pointing

« Model runs which replicated the variation of both the PBO/EURD data
sets were selected
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Parametric model search
PBO/EURD best fit
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« lyao_rt was run to generate an extensive set of source functions
based on the parameters defined above

- LOS intensities were generated for each PBO/EURD pointing

«  Model runs which replicated the variation of both the PBO/EURD data
sets were selected
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MSIS Thermospheric [H](z) Profile
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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. A12, PAGES 28,797-28,817, DECEMBER 1, 2001

Periodic variations of geocoronal Balmer-alpha brightness due
to solar-driven exospheric abundance variations

'R. B. Kerr, R. Garcia, >X. He, 'J. Noto, ‘R. S. Lancaster, °C. A. Tepley, *S. A.
Gonzalez, *J. Friedman , °R. A. Doe, ™. Lappen, 'B. McCormack

Abstract. Measurements of the geocoronal Balmer-alpha (H,) brightness have been made at the
Arecibo Observatory during 11 separate periods since 1983 using both a Fabry-Perot
interferometer and a tilting filter photometer. The tilting filter photometer is calibrated for
absolute sensitivity using a constant brightness source traceable to National Institute of Standards
and Techniques (NIST) standards and is used to cross-calibrate the Fabry-Perot interferometer.
Since the observational technique has not changed since 1983, and since the data analyses
technique are uniform, these data provide a measure of the solar cycle variation of H, brightness
at Arecibo. Unlike earlier studies, we discern no systematic discrepancy between the H,
bnghtness and estimates of the solar Lyman-beta flux that pumpsg
emission. Rather, we conclude that geocoronal hydrogen abunda *
always) larger than models suggest, although not systematically f. b
measured during solar minimum conditions, when brightness is &
during solar maximum conditions, for measurements at solar de
Above about 40° solar depression (corresponding to an illuminz
approximately 2000 km), no solar cycle variation is evident, and
persistently greater than models. Intricacies of the Lyman-beta
detection of an early morning maximum of hydrogen density nealk
brightness data alone, although the H, brightness is generally a
midnight, with brighter emission in the postmidnight sector. S
g\;ghttime) variation demonstrate that the H, brightness can va
ys.
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Derivation of neutral oxygen density under
charge exchange in the midlatitude topside

ionosphere
LS. Waldrop.

Departmentof Electrical an
Champaign, Urbana, lllinois,

E._Kudeki
Departmentof Electrical an
Champaign, Urbana, lllinois,

S.A. Gonzdlez
National Astronomyandlon
PuertoRico

M. P. Sulzer
National Astronomyandlon
PuertoRico

R. Garcia
National Astronomy andlon
PuertoRico

M. Butala

Departmentof Electrical an
Champaign, Urbana, lllinois,
E._Kamalabadi,
Departmentof Electrical an
Champaign, Urbana, lllinois

The Earth’s Hydrogen Corona

We describea new techniqueto derive neutralatomic oxygen density, [O], in theupper
thermospheraising coincidentincoherentscatterradar (ISR) andairglow emission observations
from Arecibo Observatory. The techniqueexploits thenearly resonantchargeexchange
couplingbetweenneutral andionized hydrogenand oxygen thatserves as thedominant
chemicalsourceandsink of protonsnearandabovetheF region peak. Under chargeexchange
productionandloss of H+, theprotoncontinuityequationcan be solvedfor [O] using twilight
H densityprofiles derivedfrom measuredH emission brightnessat 656.3 nm togetherwith ion
density, temperatureandflux obtainedsimultaneouslyby the Arecibo ISR. We presentboth
equilibriumandnonequilibriumsolutionsfor [O] between500 and 1500 km duringa single
quiescentnighttimeinterval undermoderatesolar activity. Comparisonswith theoretical
expectationsand with MSIS !model calculations of O densityare usedto identify thealtitude
andlocal time extentover which thetechniqueis justified. These comparisonsgenerally support
techniquevalidity between! 600 and800 km, wheresufficient reactantdensitiesare presentto
validate thechargeexchangeformulation of thecontinuityequation.Equilibrium solutionsfor
[O] near650-700 km exhibit excellentagreementwith MSIS estimatesbefore midnight,but
deviationsarising from ion transportbecomeincreasingly significant both above this heightand
as dawn approachesIncorporationof measuredprotonflux gradientsinto thenonequilibrium
solutionsimproves agreementbetweenthederivedand modeledestimatessignificantly after
midnight,while theminor nonequilibriumcontributionsduringseveral hours before midnight
lend additionalsupportfor thepresenceof chargeexchangeequilibrium.

Citation: Waldrop, L. S., E. Kudeki, S. A. Gonzalez, M. P. Sulzer, R. Garcia, M. Butala, and
F. Kamalabadi (2006), Derivation of neutral oxygen density underchargeexchangein the
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MSIS Thermospheric [H](z) Profile
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The Earth’s Hydrogen Corona

Data-model comparison search analysis of coincident
PBO Balmer o, EURD Lyman 3 geocoronal
measurements from March 2000

1. Bishop

E. O, Hulburt Center for Space Rescarch, Naval Rescarch Laborstory, Washington, D, C.. USA

). Mierkiewicz and F. L. Roesler

Universi e, Wisconsin, USA

J. F. Gémez and C. Morales
¥ Fisica Fundamental. INTA. Madkid, Spain

Received 28 Jul

ary 2004; sccepled 24 February 2004; poblishad 27 May 2004

[1] Recent Lyman series and Balmer serics airglow measurements provide a fresh
opportunity to investigate the density distribution and variability of atomic hydros
the upper atmosphere. Dedicated nightside Balmer o Fabry-Perot spectrometer
measurements at the Pine Bluff Observatory (PBO), University of Wisconsin-Madison,
have been acquired since late 1999 taking advantage of several technological advances.
Extreme ultraviolet spectral radiance measurements by the Espectrografo Ultravioleta
extremo para la Radiacion Difusa (EURD) instrument on the Spanish MINISAT-1 satellite
from October 1997 to December 2001 provide extensive sets of geocoronal Lyman 3,
Lyman y and He 584 A emission intensitics. In this paper, coincident EURD Lyman (3 and
PBO Balmer a radiance measurements from the carly March 2000 new moon period are
presented. In addition to serving as cxamples of the data sets now available, the data
volume poses an analysis challenge not faced in prior geocoronal studies. A data-
model comparison search procedure employing resonance radiation transport results for
extensive sets of parametric density distribution models is being developed for use in
analyses of multiple large data sets; this is described, and example results for the PBO
and EURD March 2000 data sets are presented. The tightness of the constraints obtained
for the solar line-center Lyman 3 iradiance and the atomic hydrogen column abundance
is somewhat surprising, given the crudeness of the parameter binning in the search
procedure and the fact that a small number of recognized corrections remain to be made
to cach data set. INDEX T b

1. F. Gémez.
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